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Abstract

The field of epidemiology is now experiencing a data deluge, demanding appropriate
methods to efficiently analyse large amounts of data. In this thesis we present advances
towards data-intensive epidemiology, introducing novel methods and applications of
data mining in this field. We focus on two distinct applications.

Our first application is the task of risk of bias assessments of systematic reviews.
At present these are a highly manual process, where reviewers identify relevant parts
of research articles for a set of methodological elements that affect the risk of bias, in
order to make a risk of bias judgement for each of these elements. We use text mining to
identify relevant sentences within the text of included articles, to rank articles by risk of
bias, and to reduce the number of risk of bias assessments the reviewers need to perform
by hand.

The application of text mining to risk of bias assessments also led to the following
methodological contributions. We introduce the concept of a rate-constrained ranking
task, of which ranking articles for rapid reviews is an example. We derive a novel metric,
the rate-weighted area under the ROC curve (rAUC), to evaluate ranking models for
rate-constrained ranking tasks. Furthermore, we derive a method to generate confidence
bounds around ROC curves, that is particularly appropriate for these types of tasks.

Our second application is the task of choosing hypotheses to test in epidemiological
analyses. Currently researchers use prior knowledge about the composition of causal
pathways, and their own research interests and preconceptions, to decide which hy-
potheses to test. Where no strong priors exist it may be preferable to use a systematic
approach to identify those to follow up. We present a novel screening step that uses
Mendelian randomisation to systematically search a large number of hypotheses for po-
tentially causal relationships that should be investigated further. As an exemplar we
search for the causal effects of body mass index (BMI) and find many associations with
outcomes that are supported in the literature.
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Chapter 1
Introduction

Epidemiological analyses have been highly effective at identifying causal associations
between exposures and health outcomes to improve public health. For instance, the
early example that smoking causes lung cancer led to a decrease in cigarette smoking
in the United Kingdom followed by a reduction of lung cancer prevalence [1]. Tradi-
tionally, epidemiological analyses involve deciding which hypothesis to test, and then
analysing the selected hypothesis in a collection of individuals to test the association di-
rectly. Nowadays, the number of variables available for analysis and hence the number
of potential hypotheses is large, and this presents a major challenge for epidemiolo-
gists in need of data-intensive methods that can efficiently process the data to establish

meaningful relationships between variables.

The increase in data is due to the availability of new sources of data, and new tech-
niques to generate data. Large cohorts exist with data such as phenotypic variables,
genetic variation, gene expression, DNA methylation, of which the Avon Longitudinal
Study of Parents and Children (ALSPAC) [2] used in Part II of this thesis, is a com-
prehensive example. There is also a vast array of data available online, examples of
which include biological databases such as KEGG [3] and social media websites such
as twitter. Furthermore, research articles are an important source of knowledge, and can
themselves be analysed to make new inferences. For instance, systematic reviews use
research articles to analyse the evidence from multiple studies together, to improve the

answer to a research question [4].

The dramatic increase in data availability provides a need for appropriate techniques

1



2 CHAPTER 1. INTRODUCTION

to analyse these large datasets. One such approach is data mining, where a potentially
large number of hypotheses are generated and explored to identify meaningful associ-
ations. The vision explored in this thesis is one of data-intensive epidemiology, where
epidemiological analyses use scalable data mining methods to assist or automate the
inference of causal associations within large epidemiological datasets. In this thesis we
present two applications of data mining to help cope with the data deluge encountered
by epidemiologists.

The first application we present assists the process of systematic reviews. Systematic
reviews have been highly successful at combining the evidence from multiple studies to
answer a research question more comprehensively than is possible from each individual
study. At present systematic reviews are performed by hand, but with the ever grow-
ing number of published research studies this is not sustainable [5]. Hence systematic
reviews need modernising to cope with the amount of data.

Much of the systematic review process involves making inferences from informa-
tion found in research articles, such as the initial search for relevant research articles,
screening the research articles, extracting the information needed to perform the review,
and performing a risk of bias assessment [4]. The application of data mining to textual
data, known as text mining, can potentially be used to automate these types of tasks.
While text mining for systematic reviews is currently an active area of research [6-20],
to date there has been little research investigating the automation of risk of bias assess-
ments [21-23]. Hence, this is a focus of our work.

Risk of bias assessments seek to determine if the result of a clinical trial is likely
to be biased, which may happen if the study methods are not adequate. For instance,
where a participant reports an outcome themselves, they may exaggerate the effect if
they know they have received the active drug rather than a placebo. The effect esti-
mate may then be more extreme than the true effect due to the intervention alone. At
present reviewers need to manually identify relevant parts of research articles for a set
of methodological elements that affect the risk of bias, in order to make a risk of bias
judgement for each of these elements. We demonstrate that text mining can be used
to assist systematic reviews by identifying text relevant to risk of bias within research
articles, and predicting the risk of bias values of clinical trials that the research articles
describe.

The second application we present assists hypothesis-driven analyses, where epi-
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demiologists choose a hypothesis to test and then perform this analysis in a particular
cohort of individuals. The large number of variables in a cohort dataset means that
there is an extremely large number of potential hypotheses, as the number of poten-
tial exposure-outcome pairs grows exponentially with the number of variables. Where
there is no strong prior knowledge of which hypothesis should be tested, it may be
preferable to use a systematic approach to search all hypotheses to identify those to
follow up. Existing methods that use this approach include genome-wide association
studies (GWAS), that search for loci on the genome that are associated with phenotypic
traits. GWAS have been highly successful at generating replicable associations. Prior
to GWAS, the results of candidate gene studies — the hypothesis-driven alternative to
GWAS — were largely non-replicable [24,25].

In this thesis we present a novel approach to search a potentially large hypothesis
space to identify associations that may be causal, using an instrumental variable ap-
proach called Mendelian randomisation. We propose a general pipeline to be used as a
first step to find potentially interesting associations to then follow up with further anal-
yses. We demonstrate this approach by searching for the causal effects of body mass
index (BMI).

1.1 Thesis overview

This thesis consists of two parts. Part I presents our work on assisting systematic re-
views through automation of risk of bias assessments. Part II presents our work on
assisting hypothesis selection for hypothesis-driven analyses.

Part I begins in Chapter 2, with background on systematic reviews and risk of bias.
We introduce our three objectives, of: 1) identifying relevant sentences within research
articles, 2) ranking articles by risk of bias and 3) reducing the number of assessments
the reviewers need to perform by hand. We give an overview of related work. We
present the methods we used to generate our dataset and a summary of this data. We
provide an introduction to machine learning and ROC analysis methods, that are used
in the subsequent chapters.

Chapters 3 and 4 present contributions to the ROC analysis literature, the motivation
of which is provided by rapid reviews. In Chapter 3 we introduce the concepts of rate-

oriented and rate-constrained ranking tasks, and show how ranking articles for rapid
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reviews can be formulated as a rate-constrained ranking task. We present a new metric,
the rate-weighted AUC (rAUC), to evaluate the performance of ranking models for rate-
constrained ranking tasks using a novel evaluation of ROC curves. In Chapter 4 we
present a new approach to generate confidence bounds for ROC curves, as a series of
confidence intervals along the ROC curve. This approach is particularly appropriate
for rate-oriented ranking tasks. In Chapter 5 we present our main results for assisting
systematic reviews and risk of bias assessments. We use supervised machine learning
to train a set of models in order to achieve our objectives described in Chapter 2.

Part II begins in Chapter 6, with an overview of current approaches that search for
hypotheses in individual level data, a discussion of the issues of causality and confound-
ing in observational epidemiology, and an overview of the Mendelian randomisation
approach, that can help infer causality between two traits. In Chapter 7 we introduce a
novel method to search a potentially large number of hypotheses for causal associations
using Mendelian randomisation. We perform a proof-of-principle analysis that searches
for the causal effects of body mass index, and present the results of this analysis in
Chapter 8.

Chapter 9 concludes with a summary of the work described in this thesis and a

discussion of future work.

1.2 Main contributions

Our main contributions are as follows.
Part I: Assisting systematic reviews

e We introduce a novel metric, the rate-weighted AUC, to evaluate ranking perfor-

mance for rate-constrained ranking tasks.

e We propose a formulation of ranking articles for rapid reviews, in terms of a rate-

constrained ranking task.

e We introduce an effective approach to generate rate-oriented point-wise confi-

dence bounds for ROC curves.
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e We demonstrate that text mining can be used to assist systematic reviews through
automation of risk of bias assessments. Specifically we have shown that it is

possible to:

e Rank sentences in research articles by relevance for each risk of bias prop-

erty individually.

e Rank articles by risk of bias so that a reviewer can assess articles from low

to high predicted risk of bias.

e Reduce the number of articles that need to be reviewed by hand, by classi-
fying a subset of articles automatically for each risk of bias property indi-

vidually.
Part II: Assisting hypothesis selection

e We introduce a novel approach to search for causal associations using Mendelian

randomisation.

e We demonstrate this approach using body mass index as an exemplar.

The work presented in this thesis has been published in the following peer reviewed
research articles. Consistent with the convention in these papers, I refer to ‘we’ rather
than ‘I’ in this thesis. I am first author of these papers, and have led and performed the

work they describe.

L. A. C. Millard, N. Timpson, K. Tilling, P. A. Flach, and G. Davey Smith, MR-
PheWAS: hypothesis-prioritization among potential causal effects of body mass
index on many outcomes, using Mendelian randomization, Scientific reports, vol.
5, 2015. [26]

I contributed to the design of analyses, performed the analyses, wrote the initial

version of the manuscript, revised the manuscript.

L. A. C. Millard, P. A. Flach, and J. P. T. Higgins, Rate-constrained ranking
and the rate-weighted AUC, in Machine Learning and Knowledge Discovery in
Databases, pp. 386403, Springer, 2014. [27]
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I conceived and developed the initial concept, derived the solution, performed the

analyses, wrote the initial version of the manuscript, revised the manuscript.

L. A. C. Millard, M. Kull, and P. A. Flach, Rate-oriented point-wise confidence
bounds for ROC curves, in Machine Learning and Knowledge Discovery in
Databases, pp. 404421, Springer, 2014. [28]

I implemented the solutions, contributed to the design of the experiments, per-
formed the experiments, wrote the initial version of the manuscript, revised the
manuscript. MK proposed the analytical solution (Theorem 4.1), the parametric
extension to a whole ROC table (described in Section 4.5.3), and the bootstrap
method (described in Section 4.5.4).

L. A. C. Millard, P. A. Flach, and J. P. T. Higgins, Machine learning to assist risk
of bias assessments in systematic reviews, International journal of epidemiology,
2015. doi:10.1093/ije/dyv306. [29]

I conceived and developed the initial concept, developed the objectives, designed
the experiments, implemented the experiments, wrote the initial version of the

manuscript, revised the manuscript, developed the prototype.

In summary, the work presented in this thesis makes strides towards our vision of data-
intensive epidemiology. This includes both methodological developments and novel
applications of existing data mining methods to epidemiological research tasks. We fo-
cus on two specific applications — assisting systematic reviews and assisting hypothesis

generation.



Part I

Assisting with the conduct of

systematic reviews






Chapter 2
Background and methods

In this chapter we begin by providing background on systematic reviews and risk of
bias assessments. We introduce a set of three objectives to assist systematic reviews and
risk of bias assessments, and give an overview of related work. We then describe the
methods we use to generate our dataset, and provide a summary of this data. Lastly, we
provide key background on machine learning methods and ROC analysis, that are used

throughout the remainder of this thesis.

2.1 Systematic reviews and risk of bias

Observational analyses test the association between two traits but often suffer from con-
founding, where an association between these traits is affected by their associations with
other variables, known as confounding factors. This may mean an association is found
that is due to confounding rather than a causal effect of one trait on another. For exam-
ple, when testing whether drinking alcohol affects the risk of developing lung cancer, an
association may be seen because people who smoke more on average drink more, and
smoking is known to increase the risk of developing lung cancer. Smoking confounds
the association between alcohol and lung cancer risk. Furthermore, irrespective of con-
founding, an association between an exposure and outcome may occur due to reverse
causation, where the outcome affects the exposure rather than vice-versa, such that the
causal direction cannot be determined [30].

The randomised controlled trial (RCT) study design avoids confounding because

9
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participants are randomly assigned to study groups, and this determines the intervention
they receive. This means that (in principle) any relationship between the exposure and
outcome should not be due to confounding. For instance, an RCT may test the effect
of a drug on a disease, where one group is given an active drug and another is given a
placebo. Because this assignment is random it will not be associated with confounding
factors. Furthermore, because participants are randomly assigned to study groups we
know the causal direction is from the study group assignment to the outcome. We note
however that it is not always possible to perform a RCT as it may not be ethical to do
so (when the interventions are harmful).

RCTs are regarded as the best study design to evaluate the effect of an intervention.
Several observational associations have been contradicted by subsequent RCTs [31].
The results of several RCTs can be combined to try to increase the precision of the

estimate, in a systematic review.

2.1.1 Systematic reviews

Systematic reviews combine evidence from multiple studies to answer a research ques-
tion more comprehensively than is possible from an individual study. An important
collection of systematic reviews are those published by Cochrane. These are produced
using a clearly defined procedure, detailed in the Cochrane Handbook [4]. Systematic
reviews are important to determine the extent to which findings reported in individual
studies are generalisable [32]. This is because studies within a review usually differ
with regards to the population characteristics or study methods, such as the age of par-
ticipants in the study. These differences may alter the effect of an intervention. For
example, an intervention may be more effective in younger compared to older people.
The steps of a systematic review on the effects of an intervention are shown in Fig-
ure 2.1. The main activities are shown on the left in blue, and sub-activities are shown
next to each of these in grey. The first step of a systematic review is to specify the
research question. For systematic reviews of the effect of an intervention this should
include the population, intervention, comparison, and outcome attributes, referred to as
PICO. Eligibility criteria are then specified using the research question and further de-
tails such as the study design. The next step of the review is a search of online databases

for articles describing studies that should be included. The search is performed and a
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set of titles and abstracts of research articles are returned. This set typically contains a
large number of articles that are not appropriate for the review, either because they are
irrelevant or do not meet the inclusion criteria. Hence the next step is to screen these
articles to remove those that are unsuitable.

Screening is performed in two stages. The first stage involves assessing the title
and abstract of each research article to determine whether it can be excluded from the
review. Whilst this can remove many articles, there are still some articles remaining
after this step that should also be excluded, because the information related to the inclu-
sion criteria is not available in the title or abstract of the article. The second screening
step assesses the full text of the remaining articles to determine whether these should
be included in the review. After screening, information that is needed for the review is
extracted from each research article. This is then followed by a risk of bias assessment,
which we discuss in the next section of this chapter. The final step of a review is to syn-
thesise the evidence, where inferences are made using the information extracted from
the research articles [4].

The evidence synthesis step seeks to summarize the findings of the studies included
in the review. This may include a meta-analysis, which quantitatively combines the
results from multiple studies with the aim of providing a more precise estimate. Meta-
analyses can only be performed when the studies in a review are sufficiently homo-
geneous, such that it makes sense to combine the results into a single estimate. One
striking example that demonstrates the value of meta-analyses is that of the effect of
streptokinase on myocardial infarction [33]. This meta-analysis, published in 1992, in-
cluded 33 trials and shows that streptokinase reduces the odds of myocardial infarction.
However, this association could have been known as early as 1973, had a meta-analysis

been performed to combine the results from the existing studies at that time.

Rapid reviews

A rapid review is a specific type of systematic review that needs to be performed under
strict time and resource constraints. Rapid reviews should follow the broad principles
of systematic reviews, where a medical research question is asked, such as the effect of
a drug on a disease, and the evidence from all relevant research articles is compiled to

give a better estimate of the drug’s effect than each individual study provides. However,
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Figure 2.1: Illustration of the systematic review process applied to a question on the
effects of an intervention. Main activities are shown on the left in blue, sub-activities
are shown in grey next to each main activity. PICO: population, intervention, control
and outcome; RoB: risk of bias.

rapid reviews typically take between 3 weeks and 6 months [34], whereas a systematic
review can take between 1 and 3 years. In order to perform the review in such a short

amount of time, the reviewer must streamline the process.

Currently there is no single ‘best practice’ for performing a rapid review. As shown
in Figure 2.2, typically the search for relevant articles may be iterative, unlike standard
systematic reviews. This is because often the number of retrieved articles is too large
to be assessed within the allocated time, and so the reviewer may iteratively refine the
search query until the number of articles is deemed manageable. The search criteria
may also be refined to restrict to publications that can be easily accessed, such as those
in a particular language, or only a subset of the available publication databases may be
searched [34]. During the extraction of data from articles the reviewers may choose

to only collate the information available in the articles and not to contact authors of
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Figure 2.2: Typical iterative search process for rapid reviews.

publications to get further information when this is not stated in the article [34].

There has been little research looking at the effect of these approaches on the results
of reviews. Egger et al. [35] investigated the effect of the depth of the literature search
on the results of systematic reviews, and found that trials that were difficult to locate
(by being unpublished, not in English or not indexed in Medline) were smaller and of
lower quality, suggesting that including these studies may actually increase the bias of
studies in a review. They suggest that thorough assessments of study quality should take
priority over thorough literature searches when time constraints exists, so that the bias

due to methodological quality is low for the studies included in the review.

2.1.2 Risk of bias

Bias is any systematic deviation from the truth in the results or inferences of a study
[4]. When combining the evidence from several studies in a systematic review, it is
important to consider whether each study it includes may be biased. Results of clinical
trials may be biased if the study methods are not adequate.

As shown in Figure 2.1, a risk of bias assessment should be performed before syn-
thesising the evidence, because this assessment affects how studies are included in the
review. Studies with poor methodological quality may be given less weight in a review
or excluded completely. Assessing risk of bias in clinical trials typically involves extrac-
tion of information sufficient to assign a judgement on the adequacy of each method-
ological property affecting risk of bias [36]. A single risk of bias assignment is then
made for each study in the review using the individual risk of bias assignments of each

methodological property.
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Before we discuss the methodological properties that affect the risk of bias we first
describe the main types of bias, within which the methodological properties can be

grouped.

Types of bias

The five main types of bias in clinical trials are: selection, performance, detection,
attrition and reporting bias [4]. Each of these are problematic because, as illustrated
in Figure 2.3, they may add a path between the exposure and outcome such that the
association between them may not be solely because of a causal effect of the exposure
on the outcome.

Selection bias refers to the selection of participants to the study groups in a trial.
Participants should be randomly assigned to study groups to ensure the intervention is
not associated with confounding factors. For instance, if all participants assigned to
a particular group have more severe symptoms then differences in the outcome across
groups may be due to this, rather than differences in the intervention.

Performance bias refers to differences in the treatment given to participants, beyond
the specific intervention of the trial. For instance, a treatment provider may supplement
the treatment of participants receiving a placebo, due to their desire to provide some
kind of active treatment, but this may affect the results of the study. Detection bias
refers to any differences in the assessment or reporting of the outcome across study
groups. This is particularly important for subjective outcomes because, for instance, if
a participant knows they are receiving the active treatment rather than a placebo they
may exaggerate their response when reporting a subjective outcome.

Attrition bias is caused when participants leave a trial after they have registered. This
may cause bias in the study result if exit from a study is associated with the group the
participants were assigned to. For example, an intervention may cause adverse effects
on participants, causing many in this group to leave the trial. To avoid this bias, where
possible (ie. where the outcome can still be ascertained from former participants) an
intention to treat analysis is performed where the results are analysed with those who
left the trial still in the analysis.

Reporting bias refers to the selective reporting of study results. For instance, re-

searchers may change which test is the main result of a trial depending on the signif-
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icance of each finding. The outcomes reported in publications have been shown to be
more likely to be significant compared with unreported outcomes [37].

Each type of bias is caused by poor methodological quality, which we now describe.

Methodological sources of bias

The methodological elements that can cause bias are referred to as domains [4]. We also
refer to domains as risk of bias properties. In this thesis we focus on three key domains:
1) the method used to generate the random sequence to assign participants to groups, 2)
the method use to allocate participants to groups, and 3) whether the participants and
study personnel are blinded to the study group assignments of the participants, which
we refer to as sequence generation, allocation concealment and blinding respectively.
As we describe below, these may cause selection, performance and detection bias. Other
domains include selective reporting (causing reporting bias), and incomplete outcome
data (causing attrition bias). These may require more complex methods to predict, such
as requiring comparisons with initial trial protocols to establish if selective reporting
has occurred, and hence we leave these for future work.

Inadequate sequence generation, allocation concealment and blinding have been
shown to be associated with more extreme effect estimates [38,39]. Recently this asso-

ciation has been shown to be driven by the effect of bias for subjective outcomes [40,41].
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Figure 2.3: Risk of bias illustration.
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The success of the RCT study design depends on successful randomisation of partici-
pants to the study groups. This depends on both the generation of the random sequence
used to assign participants to groups, and the allocation of the participants to groups
using these random assignments. If either one of these is insufficient the randomised

assumption is violated and the trial may suffer from selection bias.

Sequence generation Methods that may be used to generate random sequences
include throwing dice, tossing a coin, or using a computer program that generates ran-
dom numbers [42]. Methods that are not random include using the participant’s date of
birth, or their date of admission to hospital. These are inadequate because the assign-
ment can be predicted if these details are known. There are three types of randomisation
methods: simple, restricted and stratified [43]. Simple randomisation generates a ran-
dom sequence without any constraints on the proportion of participants in each group.
Dice, for instance, may be used to assign to two groups, with equal probability per
group. Simple randomisation can use custom probabilities to generate groups of un-
equal sizes such as with a weighted die, and can also create assignments for more than
two groups. Given a small sample the proportions of participants in each group may be
quite different from the intended proportions, but for larger samples this will converge.

It can be beneficial to have equal or close to equal numbers of participants in each
group, which simple randomisation is not able to guarantee. Restricted randomisation
uses a constrained sequence generation method to fix the number of participants in each
group. This is commonly done with block randomisation, where a block size m is stated
and each consecutive sequence of m participants registered to the trial will be assigned
to groups in a fixed proportion. There may be only a single block for a whole study such
that at the end of the study the participants will have been assigned to study groups in
fixed proportion. It can be useful to use several blocks so that before the recruitment to
a study is finished any interim analysis can be performed with the correct proportion of
participants in each group. Block randomisation has the disadvantage that the sequence
is not entirely random. When assigning the last few participants in each block it may
be possible to know with high probability to which group participants will be assigned,
and the last assignment in each block is deterministic. This is a bigger issue for smaller
block sizes because the assignments may be predicted more frequently.

As well as balancing the number of participants assigned to groups, it may be bene-
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ficial to balance the frequency of baseline characteristics across groups. Baseline char-
acteristics may affect the outcome independently of the intervention and so if they are
not balanced across groups we cannot know if it is the intervention or baseline charac-
teristic that is causing any differences in the outcome across groups. For larger samples
baseline characteristics will be naturally balanced across groups. For smaller samples
this can be forced using stratified randomisation. This method involves stratifying on
the baseline characteristic(s) and using a restricted randomisation approach within each
of these strata [43]. The main disadvantage is the potentially small block size within the

strata which can reduce the concealment of the random sequence [43].

Allocation concealment Allocation of incoming participants to groups should be
concealed during the randomisation process [4,44]. It is important that the clinician
does not know which group is being assigned to the participant, or they may interfere
with the assignment. A common method of allocation is to use envelopes, which should
be opaque and sealed so that staff are unable to see the assignments. This method is
vulnerable to attempts to alter the assignments, and so envelopes should be sequentially
numbered so that the investigators are unable to change which envelopes are given to
each participant. Furthermore, it is recommended that investigators write the participant
name on the envelope prior to opening it so that they cannot decide to change to another
envelope after seeing the assignment.

Another method of allocation is the use of a central computer random number gen-
erator, where the clinician cannot see future assignments without requesting them from
the system. Provided the clinician enrols a participant prior to retrieving the random
assignment, the assignment cannot be altered because the order of random assignments

generated from the central system must match the order of enrolment [44].

Blinding The participants of a study and the study staff should, if possible, not
know the treatment group of participants [45]. For example, where an intervention
is given by pill, an identical but placebo pill can be also given to the control group.
Blinding is not always possible, such as for non-medicinal interventions.

A participant’s or outcome assessor’s reporting of subjective outcomes may be af-
fected if they know which treatment they are receiving. Hence, a study with inadequate

blinding of participants or outcome assessors may suffer from detection bias. For in-
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stance, a participant who knows they are receiving an intervention rather than a placebo
may exaggerate the improvement in their condition. A study with inadequate blinding
of treatment providers or participants may suffer from performance bias. Treatment
providers should be unaware of the participant’s assignment so that they provide con-

sistent care to all groups.

Risk of bias assessments

To assess the risk of bias of studies in a systematic review, Cochrane recommend as-
sessing the individual domains of risk of bias, such as sequence generation, which we
have described above [4]. A single judgement for each study is then made, combining
the risks from each individual domain, which involves assessing the importance of each
domain [4]. For example, as discussed above, inadequate sequence generation, alloca-
tion concealment and blinding exaggerate the effect estimates for subjective outcomes.
If the outcome is objective, such as all cause mortality, these domains may be less im-
portant [4]. The risk of bias should be assessed separately for each outcome within
studies where multiple outcomes are reported. These judgements are highly subjective
as the reviewer must make a judgement of the risk of bias of each property from the text
in publications [46].

The results of risk of bias assessments should be used in the analysis of findings.
Cochrane recommends either restricting to studies with known low risk of bias, or per-
forming a separate meta-analysis for each risk of bias value [4]. Another common
method is to perform a sensitivity analysis whereby a meta-analysis is performed both
with and without the studies with high / unknown risk of bias to assess the effect of
these studies on the result [4].

A key barrier in the assessment of risk of bias is the insufficient reporting of study
methods in trial reports. The CONSORT statement was created to improve the reporting
of clinical trials [47] and specifies that information relevant to risk of bias should be
described in a trial report. However, although this has improved reporting of methods
relating to risk of bias, this is still often inadequate [48,49]. Other sources such as trial
protocols can contain information that is not reported in the study publications [50].

One study compared the risk of bias assignment when using just the publication

compared with using the publication with additional information from trial protocols,
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data collection forms and individual patient data, for studies of cancer interventions
[51]. The individual patient data was used to assess the level of attrition in a study.
Further information about sequence generation and allocation concealment was sought
from the trial protocol. Using the additional information increased the number of studies
classified as low risk of bias. This was largely due to a move from unknown (rather
than high) risk of bias, to the low assignment. The number of studies assigned low
increased from 44% to 69%, and 42% to 93% for sequence generation and allocation
concealment, respectively [51]. As this work focused on cancer treatments where the
outcome was all cause mortality, in both cases the risk of bias due to blinding was
always assigned low. Combining these assignments to give a single value per study,
and the number of studies with a low assignment increased from 24% to 67% when
the additional information sources were included [51]. This demonstrates the potential
increase in number of trials known to give high quality evidence (with low risk of bias)
if other sources of information are used. Furthermore, this work is consistent with other
studies that showed that poor reporting did not mean the methods of the study were
poor [52-54], such that a study with a unknown risk of bias assignment may actually
have low risk of bias.

Cochrane reviews have been shown to have better methodological quality than non
Cochrane reviews [55-59]. Hopewell et al. showed that Cochrane reviews assessed risk
of bias more often than non Cochrane reviews [58]. This is expected because risk of bias
assessments have always been a mandatory section in Cochrane reviews. In this study
nearly all Cochrane reviews (95% — 100%) assessed sequence generation, allocation
concealment, blinding and missing data due to attrition, whereas this was much lower
(60% — 69%) for non Cochrane reviews [58].

2.2 Automating risk of bias assessments

In this section we present our main objectives to automate risk of bias assessments in
order to assist systematic reviews. While we seek to automate the risk of bias assess-
ments we emphasise that this is not done to replace human reviewers in this task, but to
provide a set of tools to assist the reviewers. We begin by describing our motivation for

these objectives.
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2.2.1 Motivation

Thorough systematic reviews are time consuming, often lasting up to three years and
requiring two reviewers to assess each research article to minimise errors. One study
estimated that 80% of risk of bias assessments took between 10 and 60 minutes to
perform [60]. Furthermore, risk of bias judgements are imperfect. Studies have shown
that reviewers often report different levels of risk of bias for the same studies [61-65].
This may happen, for instance, if a reviewer misses key sentences [64]. Automating
aspects of the risk of bias assessments has the potential both to reduce the time required
to perform a review and to reduce human error and subjectivity in the reviewing process.

At present, risk of bias assessments require the reviewer to read through the research
articles to find the relevant parts of the text. They use this information to assign a risk
of bias judgement to a clinical trial for each methodological property affecting risk of
bias. However, identifying relevant sentences and predicting a risk of bias assignment
from text in articles are tasks that text mining methods have the potential to perform
automatically.

When performing a systematic review, the order the reviewer assesses research arti-
cles is arbitrary. It may be beneficial to identify the high quality articles (with low risk
of bias) early in a review so that these can be prepared for inclusion in the analyses.

Rapid reviews could also benefit greatly from this automated prioritisation [27, 66].

2.2.2 Assisting reviews: our three objectives

We now specify three concise objectives, to assist systematic reviews in different ways.
Objective 1 involves predicting the relevance of sentences within articles to risk of bias,
whereas objectives 2 and 3 involve predicting the risk of bias values of the articles
themselves. Figure 2.4 illustrates how these objectives fit into the systematic review

process.

Objective 1: Assisting reviewers by identifying relevant sentences

Risk of bias assessments require the reviewer to read through the research articles, find-
ing the relevant parts of the text. We aim to assist this process by predicting a relevance

score for each sentence, denoting the likelihood that a sentence contains relevant in-
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formation with regards to a particular risk of bias property. For instance, a sentence
containing the phrase “we used sealed opaque envelopes” is a relevant text segment for
the allocation concealment risk of bias property. This text can be highlighted in the
article to indicate that the reviewer should consider this part of the text when assessing
the level of allocation concealment performed in this study. To reiterate, this sentence
level learning is concerned with predicting the relevance of a sentence for a risk of bias

property, rather than the level of risk due to the information in the sentence.

Objective 2: Ranking articles by risk of bias

At present, the order the reviewer assesses research articles is arbitrary. We aim to create
a model that can rank articles in order of risk of bias, such that reviewers can assess
articles describing studies with low risk of bias before those with high or unknown risk
of bias. It is beneficial for the reviewer to identify the high quality articles early in a
review so that these can be passed to the statistician, who then has a better view of the
evidence because these high quality studies are more likely to feature in analyses within
the review.

Furthermore, ranking articles by risk of bias would be useful for rapid reviews,
as described previously [27]. Rapid reviews should follow the broad principles of a
systematic review, but need to be performed under strict time and resource constraints,
so it may not be possible to review all relevant articles. Therefore we can imagine that
rapid reviews would benefit from a ranking of articles by study quality, which is not

currently performed. This is explored in Chapter 3.

Objective 3: Reducing the number of reviewers required to assess articles

Typically, two reviewers assess each research article for risk of bias and a consensus
decision is made between them. Ideally, we would be able to use a model to predict the
risk of bias values perfectly using text mining, such that this could become a completely
automated process. However, a more realistic scenario may be that we are able, for a
subset of articles included in a review, to determine the value of a risk of bias property
with good enough certainty, that only one human reviewer is required to assess these
articles. In effect, one of the human reviewers is replaced by an automated process, and

the time spent reviewing this property would be reduced for this subset of articles. We
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Figure 2.4: Illustration showing how our objectives fit into the systematic review pro-
cess. Main activities are shown on the left in blue, sub-activities are shown in grey next
to each main activity and our three objectives are shown in pink. PICO: population,
intervention, control and outcome; RoB: risk of bias.

define good enough as articles where the assignment from our model has a probability
of being correct that is higher than an estimated probability that a risk of bias judgement
by a human reviewer is correct. In short, we try to be at least as reliable as a human
reviewer.

This approach results in the following three possible outcomes for each risk of bias
property, for a given article: 1) we are at least as certain as a human reviewer that
this property has not been adequately carried out, 2) we are not as certain as a human

reviewer for either assignment, and 3) we are at least as certain as a human reviewer that
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this property has been adequately carried out. Articles in groups 1 and 3 would need to
be assessed by only one reviewer, whereas those in group 2 would still need the typical

two reviewers.

2.2.3 Related work

There has been much discussion in the literature about the potential to automate sys-
tematic reviews [6-9]. In this section we provide an overview of work that has sought
to automate the tasks of searching, screening, extracting information, and risk of bias

assessments in systematic reviews.

Searching online databases

The search for research articles in a systematic review requires careful construction of
search criteria, to ensure all relevant articles are retrieved in the search. Ananiadou et
al. [7] suggest improving this task using automatic query expansion, where a user inputs
an initial search query and the retrieved research articles are used to generate additional
terms to add to the search query. This helps to ensure that research articles are found
even where they do not include the specific term specified in the original search query.
Ananiadou et al. [7] also propose using document clustering to assist the search task.
Document clustering groups the research articles returned from the search into a set of

concepts, to help the reviewer gain a better overview of the main topics of the articles.

Screening research articles

Research into automation for systematic reviews has largely focused on screening ar-
ticles for inclusion in reviews [10-18,67-70]. A recent systematic review of the use
of text mining for this task identified 44 studies between 2006 and 2014 [10]. Work
in this area has sought to automatically classify articles as relevant or not-relevant in
order to reduce reviewer workload, for instance by replacing one of the two reviewers
performing the screening task, or sought to rank articles by relevance for a particular
systematic review in order to prioritise those articles that are most likely to describe a

relevant study [10].
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Automating screening is an interesting challenge because each review is highly in-
dividual such that whether an article is relevant or not depends on the particular protocol
of a review. Therefore a unique model is needed to predict article relevance for each
review. Furthermore, for new reviews (rather than update reviews) there are no ex-
amples of articles known to be relevant at the beginning of the review, with which to
train a model. One approach that has been used to overcome this issue is active learn-
ing [14-17,67]. This approach first learns an initial model using a small number of
labelled examples, then one example is selected at a time to be manually labelled by
the user, which is then added to the training set and the model is retrained. The idea
is that by cleverly choosing examples with which to train the model, fewer examples
are needed, and hence fewer articles need manually labelling by the reviewer. The ex-
amples to be labelled are chosen using a metric denoting how likely an example is to
improve the performance of the model. For example, where a learner outputs a score
between 0 and 1, a score near 0.5 may be deemed more uncertain than the extremities,
and indicates that this example should be supplied to the learner so that the learner can

perform better on this and similar examples.

The aim of an automated approach to citation screening is to reduce the amount of
time reviewers spend screening citations themselves. The active learning approach just
described aims to minimise the number of citations that need manually labelling, which
indirectly reduces the amount of time spent manually labelling examples. This can be
extended to instead directly reduce the amount of time spent performing the manual
labelling. The time taken to review each citation varies due to differences in citation
length and difficulty in classifying each as relevant or not relevant. Given two examples
that may greatly improve model performance, if the first is expected to take longer to be
manually labelled than the second, then the second example should be used. Wallace et
al. [67] incorporate the expected time to review each citation into the example selection
metric, and conclude that this improves the performance of their system.

Unlike new systematic reviews, when a review is updated there is already an ex-
isting set of example research articles available, that were used for the original review.
Cohen et al. [13] show how these articles can be used to generate a classifier to predict
whether the new articles should be included or excluded from a review. They seek to
predict the inclusion decision based on the full text article, from the title and abstract
only. Further work by Matwin et al. [11] and Cohen et al. themselves [68, 69] have
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investigated the effect of different machine learning algorithms on the performance of
automated screening.

There are common criteria that are often used to determine inclusion in a review, and
these can be predicted using a supervised machine learning! approach. For example,
often systematic reviews are restricted to studies of RCTs, but research articles are not
adequately annotated in research databases such as PubMed, such that it is not possible
to simply specify RCT in the search query. Hence, automatically classifying articles
according to whether they are describing a RCT or other study design can assist the
citation screening process. Cohen et al. use the noisy Medline RCT tags to train a
support vector machine (SVM) to predict whether an article describes an RCT or not
[71]. This is useful as the SVM generates scores that provide a measure of confidence
rather than a binary classification. They suggest that this can be used to rank articles to
prioritise them.

Nim et al [20] seek to classify sentences according to whether they contain infor-
mation about the PICO elements (population, intervention, control and outcome) in the
abstracts of research articles. This has the potential to be used during citation screen-
ing, to indicate to the reviewer where key information related to the inclusion criteria is
described. They use conditional random fields (CRF) to predict which PICO elements
each sentence describes. CRFs make use of label predictions at nearby examples, in
this case nearby sentences within the citation, to predict the label for a particular sen-
tence (in addition to the words this sentence contains). This may be effective because
abstracts are reasonably structured with respect to the information they provide, often
following the structure of: introduction, method, results and then conclusion.

Previous work has also sought to screen articles for scoping reviews [12]. Scoping
reviews are more exploratory than standard systematic reviews, with the aim to help de-
termine an appropriate precise research question and inclusion criteria for a subsequent
review. Hence, the research question of a scoping review may be more general, and
because of this often a large number of articles are returned in the initial search. Also,
while it is highly important that all relevant studies are included in a systematic review,
for a scoping review this is less important. Gaining a more general overview is more
important for scoping reviews. This means that while a recall of 100% is needed dur-

ing screening of standard systematic reviews, for scoping reviews this can be relaxed.

! Supervised machine learning uses a dataset to train (estimate the parameters of) a model.
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Screening of scoping reviews needs to maintain a high recall, while also drastically

reducing the number of articles in the review by removing those that are not relevant.

Shemilt et al. [12] use three methods to screen abstracts of scoping reviews — two
ranking approaches and a classification approach. The first ranking approach is an au-
tomated method that uses automated term recognition to identify important terms and
assign scores to each term denoting its importance. These terms and scores are then
used to score title and abstracts using the scores as weights such that an article con-
taining terms with higher scores are ranked higher. The second ranking approach uses
manually curated lists of relevant and not relevant terms to score articles by a ratio of
the number of relevant versus non relevant terms it contains. Classification is used to
predict whether an article should be included or excluded in the scoping review. Their
work was highly successful — of the two scoping reviews for which text mining was
assessed by Shemilt et al. [12], workload was reduced by more than 88%. Screening for
scoping reviews is an easier task compared to screening for standard systematic reviews,

because of the relaxed requirement of perfect recall.

Kirichenko et al. present ExaCT, a tool to assist with the extraction of 21 study prop-
erties from full text research articles [19]. The study properties they extract are needed
to perform a systematic review, and include: sample size, outcome, intervention and
control. This tool performs a two step process. First, sentences containing this infor-
mation are found using supervised machine learning, where a separate model is used
to predict the occurrence of each property. Second, the specific part of these sentences
describing each of these properties are identified. This second stage uses regular ex-
pressions” to find a specific pattern within a sentence for a property. The idea is that
by reducing the size of the text from a full text article to just a few sentences that are
thought to contain information about a property, a simple pattern matching method can
be used to extract the relevant text. For example, a pattern that searches for a date may
identify many dates in an article, such as the date the article was published. Given only
sentences describing enrolment then any dates here are likely to be enrolment start or

end dates.

ZRegular expression are used to identify string sequences in text. For example, the regular expression
[0 —9]* would search for a sequence of numbers.
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Risk of bias assessments

We know of only one research group that has investigated automating the prediction
of risk of bias properties [21-23]. This work by Marshall et al. has two main aims,
1) to predict whether a trial is at low or not-low (which includes unclear and high)
risk of bias and 2) to predict whether each sentence in an article describing a trial are
relevant to risk of bias. This is done for the 6 risk of bias domains: sequence generation,
allocation concealment, blinding (of participants and personnel), blinding (of outcome

assessment) incomplete reporting of outcomes and selective outcome reporting.

The dataset consists of articles describing the results of clinical trials labelled with
a risk of bias value for the 6 domains, and with a set of sentences labelled as relevant or
not relevant for each risk of bias property. The labelling is derived from the Cochrane
Database of Systematic reviews. In fact, the dataset creation approach they take is very
similar to our approach, described in the next section. In brief, Marshall et al. use data
on 5,400 systematic reviews from the Cochrane risk of bias tool, where each systematic
review contains a set of citations corresponding to the studies used in the systematic
review. The citations were matched with citations in the PubMed database in order to
identify the publications for each study. The PDF articles of each matched citation were
retrieved where possible, and each labelled with values for the risk of bias properties as

recorded in the Cochrane data.

The Cochrane data also includes justifications of the risk of bias assignments given
to each study, and these sometimes include quotations indicating the text that informed
the risk of bias value assigned. Quotations were extracted from the justification and each
study with a quotation was used in the sentence level dataset. The sentences containing
the quotation were labelled as relevant and the sentences not containing the quotation
were labelled as irrelevant. A comparison with our dataset construction approach is

given in Section 2.3.2.

The article level data differed between their latest work [22] and preliminary work
[23]. In their preliminary work [23], Marshall et al. only include the 2,200 articles in
their dataset where at least one quotation (across the risk of bias domains) existed in
the Cochrane data and the full text PDF article was retrieved. The quotation does not
have to appear in the article, for this article to be included in the dataset. Also, all

2,200 articles were used for the article level learning irrespective of which risk of bias
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property was quoted for each article. In their most recent work [22] they included all
12,808 articles where both a citation existed in the Cochrane data and where the full text
PDF could be found. In both cases, the articles labelled with each risk of bias value may
not contain the information used to inform the risk of bias judgement. This is because
reviewers may look at multiple sources when assessing the risk of bias of a study.

Marshall et al. take an interesting multi-task learning approach where a single model
is used for all 6 risk of bias domains, for each of the two aims. One model is generated
to predict risk of bias for a research article (describing a trial) and a second is generated
to predict the relevance of each sentence in a research article. Unigram and bigram 3
features are constructed from the article or sentence text for the article and sentence
models respectively. In order to predict the 6 domains using a single model a copy
of the feature vector (comprising the unigram and bigram features) is included in the
model for each domain. The features in each of these vectors are only used to predict
the domain to which they correspond. An additional copy of the feature vector is used
to learn the predictions jointly across domains, and this is where the relationships of
predictions across the domains are captured in the model.

When predicting the risk of bias from article text it may be beneficial to know which
sentences contain information relevant to this prediction. Marshall et al. add this infor-
mation to the article level learning task by supplementing this model with information
from the sentence level model. Extra features that denote whether an n-gram # feature
occurs in a relevant sentence (extracted from the sentence model) are added to the article
model.

Performance of the article model was evaluated with accuracy. This assumes that the
misclassification cost of each positive example (articles with low risk of bias) is equal
to that of each negative example (articles with high/unclear risk of bias). Marshall et
al. compared the performance of the article model with a simpler approach where a
separate model is trained for each risk of bias domain. Using a multi-task formulation
was found to improve the results compared to predicting the domains individually, for
all domains except blinding of outcome assessment, although the authors note that this

improvement was not significant. The accuracy of human reviewers was also evaluated

3Unigram features denote the occurrence of a single word, and bigrams denote the occurrence of a
pair of adjacent words.

“In general, features denoting the occurrence of a set of n adjacent features are referred to as n-grams.
In this case n-gram refers to unigrams (1-grams) and bigrams (2-grams) — the n-grams used in this work.
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and this was found to be higher than both the simple and multi-task models.

The sentence model was evaluated in two ways, where the most relevant and three
most relevant sentences were selected from an article (for each domain), referred to as
top-1 and top-3 respectively. This was then compared against two alternative strate-
gies. The first strategy used the text justifying a risk of bias assignment, stored in the
Cochrane risk of bias database. The second strategy selected a random sentence from
the article. Reviewers assigned scores to the sentences identified in the top-1 and top-3
approaches, and the two alternative strategies. These scores denoted how relevant the
reviewer thought each sentence was to the domain, where the highest score denoted a
highly relevant sentence. Their analyses found that the top-1 sentences were assigned
the highly relevant score more often than the random approach, but less often than the
text from the Cochrane database. The highest sentence score of the top-3 sentences was
assigned the highly relevant score more often compared to the text from the Cochrane
database, although this difference was not significant. This is an exciting result because
it indicates that a very small subset of sentences can be selected and provided to the

reviewer as relevant text for a particular risk of bias domain.

2.3 The RoBAL dataset

In order to work towards the three objectives specified in Section 2.2.2, we construct a
dataset so that we can perform supervised machine learning to predict the three proper-
ties. We call this the RoOBAL (Risk of Bias Article Labelling) dataset. RoBAL consists
of a set of 1,467 full text articles, each assigned a value for at least one of the three risk
of bias properties — sequence generation, allocation concealment and blinding, where
the value is supported by some part of the text in the article (summarised in Figure 2.5
and Table 2.3). The risk of bias values are either low or not-low. A value of low denotes
that a particular property has a low risk of causing bias. A value of not-low denotes
that a particular property either has a high risk of causing bias or that the value is un-
clear (because there is insufficient information in the article to determine the risk of
bias). RoBAL also includes a binary label attached to sentences, denoting whether they
contain relevant information with respect to a risk of bias property. Each sentence is
relevant, not-relevant, or is unlabelled. We also have the title and abstract text of each

research article in our dataset, retrieved from the PubMed database. RoBAL will be
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available at http://www.datamining.org.uk (title and abstract only). We now describe

the dataset construction process.

2.3.1 RoBAL dataset construction

We constructed RoBAL using data collected from the Cochrane Database of Systematic
Reviews, and specifically from the Cochrane risk of bias assessment tool [36]. We used
data on 1,399 systematic reviews from this tool, conducted between 2008 and 2011
(with 81, 389, 686 and 243 reviews in 2008, 2009, 2010 and 2011, respectively). This
set consists of all intervention reviews that used the new (2008) Cochrane risk of bias
assessment tool and reported assessments for at least two domains, up to and including
issue 4, 2011. The Cochrane review groups of these reviews are shown in Table 2.1.
As already mentioned, this data provides citations and information used to label the

research articles. We also collected the full text PDF article from the world wide web.

Sequence generation Allocation concealment

989
5

Blinding 671

Figure 2.5: Venn diagram of article labelling in RoBAL.
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Figure 2.7 shows the data flow from the Cochrane Database of Systematic Reviews
to the articles included in our dataset, and Figure 2.6 shows the number of reviews
or articles at each stage. The 1,399 systematic reviews in the Cochrane database con-
tain 18,167 references to research articles describing the clinical trials in these reviews.
From this set of research articles our dataset creation process described below results in
a set of 1,467 research articles.

To construct RoBAL there are three main steps: 1) Collating the data from the
Cochrane risk of bias tool, 2) collecting full text PDF articles from the world wide web,
and 3) labelling research articles with risk of bias values, and their constituent sentences
with relevance labels. A flow diagram illustrating the data construction process is given

in Figure 2.7.

Collating Cochrane risk of bias data

The Cochrane risk of bias data consists of a set of systematic reviews, each with a set
of citations of articles that reviewers assessed for each clinical trial in the review. Each
trial also has a low, high or unclear value assigned to each risk of bias property for
each outcome in the trial. A value of low for blinding, for instance, means that blinding
was adequately performed in this study such that the risk of bias is low. A value of
unclear indicates that there was insufficient information in the article to determine the
risk of bias. These judgements are supported by text descriptions, often including direct
quotations from articles or a comment stating that no information was found in the
article.

The risk of bias labels are entered by hand into the Cochrane risk of bias tool, and

1,399 systematic reviews in CDSR

'

18,167 research articles describing
clinical trials in CDSR

'

1,467 full text articles included in
our dataset

Figure 2.6: Data flow diagram.
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hence vary across systematic reviews. However, most of the labels were one of a small
set, and we mapped these to our three risk of bias properties as follows. The labels
‘Blinding?’ and ‘Blinding’ were mapped to the blinding property, ‘Adequate sequence
generation?’, ‘Adequate sequence generation’, ‘Sequence generation?’ and ‘Sequence
generation” were mapped to sequence generation, and ‘Allocation concealment?’, ‘Al-
location concealment’ and ‘Method of allocation Concealment’ were mapped to alloca-

tion concealment.

In the case where a trial reported multiple values for a given risk of bias property

Article in a Cochrane risk of bias assessment with
either a quotation or "no information’ stated, for at least
one risk of bias property

[ Full text article found Article excluded

.

[ seg-gen ] [ alloc-conc] [ blind ]

!

. — ;
Sentences containing quotation are
labelled as relevant for seqg-gen,

seg-gen text description @ (_remaining are unlabelled
contains quotation

@ _»f Article labelled with value )
of seg-gen recorded in
L Cochrane data y
seqg-gen text description states @
no information’ (" All sentences in article are )
labelled as not-relevant for
(no) (_seq-gen )

[ Article not labelled for seg-gen ]

property

Figure 2.7: Dataset construction flow diagram.
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Citation 1
Study
Citation 2 ~ ~
1
1
seqg-gen = unclear
- Citation 3 :
1
I
alloc-conc = yes |
1
Description )
blind = yes “we used sealed opaque
envelopes”

Figure 2.8: Data from the Cochrane risk of bias tool. Dotted line represents a relation-
ship that we need to infer. Citation 2 is included in our dataset whereas citations 1 and
3 are excluded because no link with a risk of bias property could be inferred.

(because the trial assesses more than one outcome) then the first value encountered
when processing the Cochrane risk of bias data files was used. In the set of systematic
reviews we used from the Cochrane risk of bias tool, this was only ever the case for the
blinding property.

The Cochrane data do not specify which articles contain the information that in-
formed the risk of bias judgement. We use the text descriptions to infer this. First,
articles containing quoted text contain information used to make the judgement. For
instance, Figure 2.8 shows an example where a study has a quotation for the blinding
property, which is found in the article content of citation 2. We then infer that the blind-
ing judgement was made using information in this particular article. Articles where ‘no
information’ was stated do not contain any information, and we can infer that the lack
of information is the reason for this choice of label value. For instance, an article may
have the label unclear for blinding and ‘no information’ in the text description because
all research articles cited for this study in this review have been found to contain no
relevant text, such that an assignment for the property value to low or high could not be
given. We only include articles in RoOBAL when either ‘no information’ is stated, or a
quotation is found in the article text.

We combine the high and unclear labels in the Cochrane data to give a binary vari-
able with values low and not-low. We justify this on the basis that a reviewer generally

wants to identify the high quality studies, such that the articles of high and unclear
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risk of bias can be grouped together. This is also beneficial to maximise the number of
examples in each class which is reduced as the number of classes increases.

We use the quotations and ‘no information’ statements to label sentences as relevant
or not-relevant. A sentence is relevant if it contains a quotation supplied for this article
in the Cochrane risk of bias assessment. A sentence is not-relevant if it is within an
article associated with a study where ‘no information’ was stated. Otherwise, a sentence
is unlabelled. We cannot determine the label of the unlabelled subset because when a
reviewer provides a quotation during a risk of bias assessment, they are likely to choose
only exemplary text rather than to include quotations for all relevant text in an article.
Hence, these unlabelled sentences may contain relevant information.

We use two regular expressions to extract quotations from the description field,
which identify single and double quotes, respectively. We also searched for quotations

9

where a reviewer had skipped some of the text inside a quote, using the ...’ notation.
We dealt with this by treating the text either side of the ...’ as separate quotations, such

that, when labelling using these two quotations the same sentence would be labelled.

Collecting full text PDF research articles

Due to the time-consuming nature of creating a dataset by hand, we instead use an auto-
mated process. This process retrieves the full text PDF articles from online sources, for
citations given in the Cochrane risk of bias assessments. Figure 2.9 gives an overview
of the sources of information we use to collect the PDF articles. The PubMed database
is useful because it contains links to full text research articles. We use this database in
a two-stage process.

The data from the first source, the Cochrane risk of bias tool, has been described
above. For each citation retrieved from the Cochrane data we search the PubMed

database for a matching citation, in order to find the PubMed identifier of this refer-

Rule Exact match Partial match
Rule 1 title
Rule 2 page start, page end title

Rule 3 page start, page end, volume, issue

Table 2.2: Matching Cochrane citations to PubMed citations.
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4. World wide web

Article
full text

2. PubMed API
Full text
URLs
Citations

RoB values
1. Cochrane risk of

bias assessments

PubMed
citations
3. PubMed website

Figure 2.9: Online data sources for collecting PDF research articles. First the citations
and labels are retrieved from the Cochrane data files. PubMed is then used to find the
PubMed ID for each citation by matching the Cochrane citation with a PubMed citation
using the PubMed API. The PubMed website is then scraped to identify possible URLSs
which may contain or link to the full text. We then use these URLSs as starting points to
search the world wide web for the full text PDF articles.

ence. This is done using the PubMed application programming interface (API)°. Our
initial search uses the title of the research articles only, with the additional search query
constraints that 1) the publication type is not a letter and not a comment and 2) the lan-
guage is English. This may return several articles, which we compare to the original
citation details of the Cochrane risk of bias tool to find one corresponding to this ref-
erence. We use a series of rules to determine whether a match has been found, shown
in Table 2.2. Each rule assesses the similarity of particular fields and uses either exact
matching or partial matching (or a combination of both) to compare the citation de-
tails from the Cochrane data with the results from PubMed. Partial string matching is
required because the data in the Cochrane tool is entered by hand and hence is often
noisy. Where only partial string matching is used we require tougher constraints on
other fields. For example, a match is found if the titles match exactly, but if there is only
a partial match between titles then we require the start and end page numbers to match

also.

>This API allows the PubMed database to be queried using a computer programme rather than only
being able to access this data through loading webpages on the PubMed website.
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Partial string matching was performed with the Smith-Waterman algorithm [72].
This algorithm performs local alignment string matching, where the best match of a
given string, s, is found within a potentially much longer string, s,. This contrasts to
global alignment methods that try to match two strings entirely. The Smith-Waterman
algorithm allows for a degree of noise in the text, rather than requiring that s; is exactly
matched within s,. Two types of noise are allowed, a mismatch or a gap. Prior to
running the algorithm an award is set for a character match, and a penalty is set for
a mismatch and gap, which tend to be positive and negative values respectively. The
algorithm uses these to determine which alignment is preferred. For instance, if a gap
incurs a high penalty, these would not occur in the alignment unless the benefits of
using a gap outweighed this penalty (because a large subsequent sequence of characters
were then successfully aligned). Also, we can calculate an alignment score denoting the
degree to which s; was locally aligned within s, the sum of the awards and penalties
for a given local alignment. The following example compares the string ‘double-blind’

with ‘double b ind’. We use awards of 1 for a match and —1 for both a mismatch and

gap.

S1 d o u b1l e b 1 n d
s2/... d o u b1l e - b 1l 1 n d

This comparison has 10 character matches, one mismatch (- versus a space) and one
gap where s is missing the character /. We can see how adding the gap improves the
match overall because a gap incurs the award of —1, but this aligns the ‘ind’ at the end
of the strings which has an award of 3. The score for this alignment is 10 —2 = 8.

In this work we use the same awards as the example above, assigning 1 for a match
and —1 for both a mismatch and gap. To determine whether s is sufficiently matched
in s, we use a relative threshold of the alignment score compared to the total possible
alignment score for a given sj. The total possible score is the length of s; and we
use a threshold of 0.8, such that an 80% match is sufficient to determine that s1 has
been found in s;. These settings are the same for all further tasks using partial string
matching.

After citations have been identified in PubMed we use the PubMed article pages
(such as http://www.ncbi.nlm.nih.gov/pubmed/24071462) to provide a set of links to
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the full text. We use the following recursive method where each page linked to from
PubMed is parsed to attempt to find the full text PDF article. First we attempt to parse
the page as a PDF document. If this is successful then this is likely to be the PDF of the
research article. If this is not successful then we process the page to find HTML links,
which may link to the PDF, or to a page that itself links to the PDF. We find links with a
URL that either contains the word ‘PDF’ or ‘full’, or a link whose text is similar to the
title of the research article, using partial string matching. We limit this search to a link
depth of three (including the direct link from the PubMed website).

After retrieval of the PDF articles the full text content is extracted using the adobe
PDFbox text extraction tool (version 1.8.6). We check that this research article cor-
responds to the citation by attempting to find the title and abstract in the text of this
PDF. This is a non-trivial task because text extracted from PDF documents is inherently
noisy. A text extractor (such as the Apache PDFBox® extractor that we have used) may
be unable to recognise columns so that two columns are extracted as a single column.
Characters may be read incorrectly or marks on the page may be passed as characters.
The text in page headers and footers, and the data from tables and figures, may be in-
cluded into the main body of text. We therefore check that the title and abstract are
found in the PDF text using partial string matching as described above. For articles
where a quotation is assigned we also check that the quotation is found in the article,
also using partial string matching. If the quotation could not be found then this article

is not included in the dataset.

Labelling research articles

We segment the article text into sentences using the PTBTokenizer of the Stanford
CoreNLP Java package (version 3.4.1). Sentences in each article with a quotation are
parsed to identify those containing the quotations attached to each study (again using
partial string matching). We save each article in a Javascript object notation (JSON) file,
with the full text content of the PDF article stored as an array of sentences. Each quoted
sentence has a quotation attribute that relates this sentence to the specific quotation it
contains. Each JSON file also contains the citation data we retrieved from PubMed

including the PubMed title and abstract, and the risk of bias property values.

6 Apache PDFBox available at http://pdfbox.apache.org.
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Property Property value Number Proportion
YES 7,120 0.415
BLIND NO 4,705 0.275
UNCLEAR 5,316 0.310
YES 6,846 0.408
SEQ_GEN NO 679 0.041
UNCLEAR 9,263 0.552
YES 6,057 0.338
ALLOC_.CONC | NO 1,342 0.075
UNCLEAR 10,498 0.587

Table 2.3: Number of studies with a value of each property, value pair in our original
dataset (18,167 studies).

2.3.2 Comparison with related work

The approaches used by ourselves and Marshall et al. to generate a labelled dataset are
very similar [21-23]. Both use data from the Cochrane risk of bias tool to provide
labelled data, use full text articles extracted from PDF articles found on the world wide
web, and use an automated procedure to identify quotations in the articles. Marshall et
al. used data on 5,400 systematic reviews from the Cochrane data whereas we used data
on 1,399 systematic reviews.

The article level dataset of preliminary work by Marshall et al. used only the 2,200
articles where a quotation was attached to at least one risk of bias property and the PDF
article could be retrieved [23]. The latest work by Marshall et al. used the 12,808 articles
where a PDF could be retrieved [22]. In contrast, we only include circa 1,500 articles
where we have evidence that the risk of bias assignment was made using a particular
article, where either a quotation was found in the article text or a reviewer stated that no
information could be found. This meant that our dataset contained different articles for
each risk of bias property depending on which quotations were supplied and identified
in the article text for each property. Requiring quotations to be identified in the article
text caused many to be excluded for two reasons. First, an article cited in the Cochrane
data may not have been the source of the quotation as it is common for reviewers to
look at many sources. Second, due to the noisiness of PDF extractions, it may not be
possible to locate the quotation in the extracted text (using the automated process we
used).
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Furthermore, to ensure that the article corresponds to the citation we check that
the title and abstract from the PubMed database is located in the article text. We use
partial string matching to identify text within articles in order to allow for noise created
during the PDF text extraction, whereas Marshall et al. use exact string matching. In
addition to using the full text, we also collect the title and abstracts from PubMed,
whereas Marshall et al. focus their work solely on making predictions using the full
text. Our sentence labelling uses sentences known to have a not-relevant label (because
the article has been described as containing no information), where as Marshall et al.
use unlabelled sentences as the not-relevant examples.

While we focus on three risk of bias domains (sequence generation, allocation con-
cealment and blinding), Marshall et al. look at 6 risk of bias properties, using blinding
of outcome assessor and blinding of participants and personnel as separate domains
and additionally investigating incomplete reporting of outcomes and selective outcome

reporting.

2.4 Machine learning methods

In Chapters 3 to 5 we use machine learning methods to work towards the objectives

stated above. In this section we give an overview of these methods and our notation.

2.4.1 Learning predictive models

Text mining is an established field where predictions are made from text data. We
take a supervised machine learning approach, where we use a dataset (described in
Section 2.3) to train models in order to make predictions for new, unseen examples. In
this thesis we use common machine learning terminology. The dataset is composed of
a set of examples, also referred to as instances. We refer to the parameters of a model
(also known as the independent variables) as features. The variable being predicted
(also known as the dependent variable) is referred to as the class or label. Hence each
instance consists of a set of features and a label value. Commonly the features and label
are referred to as the input and outputs of the model, respectively. The terms ‘learn’
and ‘train’ are used interchangeably and refer to the estimation of a models parameters

using any given algorithm.
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An algorithm may learn a simple linear model, commonly used in epidemiology,
such as logistic regression (as used in Chapter 5). Other algorithms may learn models
less commonly used in this field, including decision trees and naive Bayes (as used in
Chapter 3). Each algorithm differs in the set of assumptions of the models it learns,
referred to as the model’s inductive bias. For instance, the inductive bias of logistic
regression is the assumption of linearity — that the label is inferred from a linear combi-

nation of the features.

We use two types of models to make predictions from the article text. The first, used
for objective 1, predicts the relevance of each sentence of an article using the words it
contains. The second, used for objectives 2 and 3, predicts the risk of bias of a study
from the words contained in an article. We call the models used to predict sentence
relevance and article risk of bias sentence models and article models respectively. In
line with the domain-based nature of a risk of bias assessment, we generate separate
models for each risk of bias property: sequence generation, allocation concealment and

blinding.

A flow diagram illustrating the process from PDF article to model predictions is
shown in Figure 2.10. The text is extracted from the PDF article and this is segmented
into sentences. Each article model takes the article text as input, in the form of a ‘bag
of words’ representation. In this representation each variable is the number of times a
word occurs in the article. Each sentence model takes the text of a single sentence as
input, again using a bag of words representation, where each feature is the number of

times a word appears in the sentence.

As is common practice in machine learning, we evaluate model performance using
10-fold cross validation, where the data is split into 10 equal sized parts called folds. A
model is then trained using 9 folds (90% of the data) and tested on the remaining fold
(10% of the data), and this is repeated 10 times with different 90/10 splits of the dataset.
We stratify the labels across folds such that each fold contains approximately equal
numbers of examples of each class. Cross validation avoids overoptimistic estimates of
performance, which can arise when the model is trained and tested on the same data. We
evaluate the performance on the test sets using ROC analysis, which involves averaging
the curves of the individual folds to generate a single ROC curve. This is discussed in

the next section.
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Figure 2.10: Flow diagram from research article to model predictions.

2.4.2 Evaluating models with ROC analysis

ROC analysis is used to evaluate the ranking or classification performance of a machine
learning model. Many types of machine learning models are first and foremost ranking
methods. For example, a logistic regression model assigns a score between zero and one
to each example, which can then be used to rank these examples in order of descending
score. An example ranking (given labels 0 and 1 where 0 denotes the positive class and
1 the negative class, and where a lower score predicts the example is more likely to be

positive) is:

Label 0 O 1 0 0 1 1 1 0 1
Score 0.05 0.1 0.15 02 055 07 0.75 0.8 085 09

Ranking methods can be used as a classifier by specifying a classification threshold
at some point along the ranking. This classification threshold says that all examples
before this point on the ranking should be predicted as positive and all those after should
be predicted as negative. For example, the vertical lines in the ranking below depict two

example thresholds, that could be used to classify the examples.
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Label 0 O 1 0 0 1 1 1 0 1
Score | 0.05 0.1 0.15 02]055 07 0.75 0.8 085 0.9
0.0 0.5

The threshold at score = 0.0 classifies all examples as negative, whereas the thresh-
old at score = 0.5 classifies 4 as positive (3 positives and 1 negative) and 6 as negative (2
positives and 4 negatives). Each threshold point on a ranking has a corresponding con-
tingency table, that contains the number of positive examples correctly and incorrectly
classified as positive and negative, and the number of negative examples correctly and
incorrectly classified and negative and positive. Respectively, the contingency tables for
the 0.0 and 0.5 thresholds shown above are:

Predicted label Predicted label
0 1 0 1
00 5 0|3 2
Actual label Actual label
10 5 1)1 4

Receiver operating characteristic (ROC) curves show both the ranking and classi-
fication performance of ranking models. These plots are used to assess the perfor-
mance of the models visually [73]. A ROC curve is a plot of true positive rate on the
y-axis against false positive rate on the x-axis. The false positive rate (equivalent to
1 —specificity), is the number of negative examples incorrectly classified as positive.
The true positive rate (also called recall or sensitivity), is the number of positive exam-
ples correctly classified as positive.

The ROC curve of our example ranking is given in Figure 2.11. Each point on the
ROC curve represents a position in the ranking, and a potential classification threshold.
For example, the points of the two thresholds given above are at (0, 0) and (0.2, 0.6) on
the ROC curve. The first classifies no examples as positive, hence the true positive and
false positive rates are both zero. The second classifies 4 of the 5 positive examples as
positive giving a true positive rate of 0.8, and 2 of the 5 negative examples as positive

giving a false positive rate of 0.4.
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The set of examples used in the above ranking (and ROC curve) can be thought
of as a sample from a larger population of examples. A ROC curve generated from a
sample is known as an empirical ROC curve. We can also generate a ROC curve for
the population, referred to as an analytical ROC curve. In fact, while an empirical ROC
curve can be generated by sampling a set of examples from the population and ranking
them, as we show in Chapter 4, empirical ROC curves can also be generated by sampling
the analytical ROC curve. An example analytical curve is given in Figure 2.12. While
an empirical curve usually has linear segments that may be vertical or horizontal, an
analytical curve tends to be smoother. The reason for this becomes clear in the next

section.

Metrics in ROC space

The true positive and false positive rates just discussed are two metrics that are con-
veyed in ROC space. There are several other metrics that are also shown in ROC space.
Our work involves binary classification tasks where we are predicting relevant or not-

relevant for sentence examples, or low or not-low risk of bias for article examples. We

0.8r

TPR

0.2¢

|
0 01 02 03 04 05 06 07 08 09 1
FPR

Figure 2.11: Example empirical ROC curve.
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now specify this problem setting formally, before introducing a set of key metrics rele-
vant to the work in this thesis, together with our notation (consistent with the notation
of [74]).

We assume a two-class classification problem with instance space 2" ’. The positive
and negative classes are denoted by 0 and 1, respectively. We fix the relevant sentence
label and low article label as the positive classes. We make this choice because these
are the labels we are interested in identifying. The learner outputs a score s(x) € [0, 1]
for each instance x € 2", such that lower scores express a stronger belief that x belongs
to class 0. To be clear, the positive class is denoted by 0 and a lower score (nearer to 0)
denotes an example is more likely to be positive.

The score probability distributions and cumulative probability distributions are de-
noted by f; and Fj for class k € {0,1}. When we refer to the analytical case fj is a
probability density function, and when we refer to the empirical case f; is a probability

mass function. Given a threshold at score ¢ the true positive rate (TPR), also called sen-

"The instance space is the input to the model — the set of features used to predict the label.

TPR

Figure 2.12: Example analytical ROC curve.
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sitivity or positive recall, is P(s(x) < t|k = 0) = Fy(¢) and the false positive rate (FPR)
is P(s(x) <t|lk = 1) = Fi(r). The true negative rate, also called specificity or negative
recall, is 1 — Fy(t). Fo(t) and Fj(r) are monotonically non-decreasing with increasing ¢,
and this has some notational advantages. In the empirical case the true and false positive

rates can be given in terms of the number of examples:

ThH

Folt) = ——1 2.1
FP,

Fi(f)= — 1 22

(1) TN, + FP, (2-2)

where TP, and F P, are the number of positives correctly classified as positive, and neg-
atives incorrectly classified as positive, respectively, and T N; and F'N; are the number of
negatives correctly classified as negative, and positives incorrectly classified as negative,

respectively. These values correspond to the four cells of a contingency table:

Predicted label
0 1
TP FN;
Actual label
FP, TN;

We can see from the definitions of the true and false positive rates that each ROC
curve can be represented as two score distribution functions, one for each class. To
be more precise, when the ROC curve is empirical the probability distribution is a his-
togram and when the ROC curve is analytical the probability distribution is a probability
density function. Example probability mass and probability density functions for our
example empirical and analytical ROC curves respectively are given in Figures 2.13a
and 2.13b. These are only examples, as many score densities produce the same ROC
curve, because the scores are not fixed for a ROC curve — it is the relative densities
at each score and the order of these across scores that matters. For example, in Fig-
ure 2.13a, we could imaging shifting the first bar at score 0.1 to score 0. This would
not change the ROC curve because the relative ordering of each bar in the ROC curve
is the same. This is equivalent to the fact that for a ranking of examples of an empirical

ranking it is the relative scores that determine the ranking rather than the actual score
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values. This idea is used in Chapter 4 where we introduce a method called rate-oriented
sampling.
Example cumulative distribution functions are shown in Figures 2.13c and 2.13d for

our empirical and analytical ROC curves of Figures 2.11 and 2.12. Since the probability
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(a) Probability mass function for empirical ROC
curve of Figure 2.11.
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(c) Cumulative distribution function for empir-
ical ROC curve of Figure 2.11 and probability
mass function of Figure 2.13a.
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(b) Probability density function for analytical
ROC curve of Figure 2.12. Normal distribu-
tions with 4 = 0,0 = 1 for positive class (purple
solid) and i = 1,0 = 1 for negative class (green
dashed).
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(d) Cumulative distribution function for analyti-
cal ROC curve of Figure 2.12 and PDF of Fig-
ure 2.13b.

Figure 2.13: Example probability distribution functions and cumulative distribution
functions. Purple corresponds to the positive class and green corresponds to negative
class.
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distribution of the analytical ROC curve is a continuous probability density function,
the CDF is also continuous. In contrast, as the probability distribution of an empirical
curve is a discrete probability mass function, the CDF is right continuous with left limits
(shown in Figure 2.12 as a series of horizontal segments with filled and hollow circles
at the left and right ends, respectively). This occurs because when increasing the score
from zero to one the CDF only changes when we reach a score that has a non-zero
probability, jumping by the probability at this score.

While a ROC curve can be inferred using just the class score densities, many metrics
cannot be inferred from these densities alone. We also need to know the proportion of
examples in each class, known as the class distribution. We denote the proportion of
positives and negatives by 7y and 7; respectively. The number of positive and negative
examples are denoted ng and n; respectively, and the total number of examples is de-
noted n, such that n = ny +ny, My = no/n and m; = n; /n. A dataset with an equal number
of examples in each class (my = 7y = 0.5) has a uniform class distribution. We now de-
fine three key metrics, the predicted positive rate, accuracy, and the area under the ROC
curve (AUC). The predicted positive rate and accuracy are measures of classification
performance, whereas the AUC is a measure of ranking performance.

The score probability distribution of the mixed distribution is denoted by f and given
by:
f(t) = mo- folt) +m - f1(t) (2.3)

The cumulative distribution of the mixed probability distribution is denoted by F' and
given by:
F(t) =m-Fo(t)+m-F(1) (2.4)

Again, the mixed probability distribution is a probability density function in the analyt-
ical case and a probability mass function in the empirical case. The mixed cumulative
distribution is continuous in the analytical case and right continuous with left limits in
the empirical case.

The mixed cumulative distribution is also the proportion of positive predictions at
threshold ¢ known as the predicted positive rate, which we abbreviate to the rate. In the

discrete case, the rate can also be given by:

B TP +FP,
" TP.+FP,+TN, +FN,

r(t) (2.5)
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Accuracy acc at threshold ¢ is the proportion of examples that have been correctly clas-
sified, and can be formulated as a weighted average of positive and negative recall,
weighted by the class distribution:

acc(t) = ﬂoFo(t)-i—ﬂl(l—Fl(l‘)) (2.6)

In the discrete case accuracy can also be given by:

acc(t) = Th+ 1N (2.7)
TP, +FP,+TN,+FN, '

The area under the ROC curve (AUC) is the true positive rate averaged over all false
positive rates:
1 +00
AUC = J FoydF, = J Fo(l‘)fl (Z‘)d[ (2.8)
0 —0
The following table gives the values of the four classification metrics we have in-
troduced, for our example ranking when the threshold is set to each position along the
ranking. TPR and FPR are the true and false positive rates, respectively, and rate is the
predicted positive rate.

Label 0 0 1 0 0 1 1 1 0 1

Score 005 0.1 015 02 055 07 075 08 085 09
1 2 2 3 4 4 4 4
TPR 3 5 5 5 3 5 3 5 1 1
1 1 1 2 3 4 4
FPR 0 0 s s 5 5 5 5 3 1
6 7 6 7 8 7 6 5 6 5
Accuracy 13 13 19 1o 10 10 10 10 10 10
1 2 3 4 5 6 7 8 9
Rate 7 % 4 1 10 1 10 10 10 [

We note how ROC curves are not sensitive to changes in class distribution because
the true positive and false positive rate metrics each pertain to a single class. Hence the
AUC is also not sensitive to changes in class distribution. Accuracy and rate, however,
are sensitive to changes in class distribution. This can be seen using isometrics in ROC

space.
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Isometrics

Metrics such as the rate can be depicted in ROC space using isometrics — points on ROC
space that have the same value for a given metric [75]. For example FPR isometrics are
vertical lines, and TPR isometrics are horizontal lines. The predicted positive rate and
accuracy also have isometrics in ROC space. Examples of these isometrics are shown
in Figure 2.14. The isometrics shown in Figure 2.14a correspond to a dataset with a

uniform class distribution, whereas those in Figure 2.14b correspond to a dataset with

_m
E
and accuracy isometrics have slope % such that they become steeper as the proportion

twice the number of negatives compared to positives. Rate isometrics have slope

of negatives increases, as shown in Figure 2.14. Accuracy and rate isometrics have
gradients 1 and —1 respectively, when the class distribution is uniform.

The dependence on the class distribution can be seen intuitively as follows. Each
example in a ranking has equal weight, irrespective of the class, for both accuracy and
rate. If there are twice the number of negatives to positives, then half the number of
negatives have the same weight as all the positives. For accuracy, classifying half the
negatives correctly and no positives has the same worth (the same accuracy) as classify-
ing all the positives correctly and no negatives. For rates, the same number of examples
are classified as true when classifying half the negatives as positive and no positives as

positive, compared to classifying all positives as positive and no negatives as positive.
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Figure 2.14: Accuracy (green dotted) and rate (gray dashed) isometrics in ROC space.
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Consensus curves

In general, when several sample ROC curves are generated, such as with m-fold cross
validation, they can be used to produce an average ROC curve, called a consensus
curve [73]. Common approaches include vertical and horizontal averaging. Vertical
averaging calculates the average true positive rate while fixing the false positive rate
(Figure 2.15a). Horizontal averaging is a similar approach that instead calculates the
average false positive rate while fixing the true positive rate (Figure 2.15b). Another
approach we call rate-averaging, also referred to as pooling [76], where the average of
the true and false positive rates at each rate are calculated and then used to generate a
single curve (Figure 2.15c).

We also note that consensus curves are also generated for meta-analyses of diag-
nostic test accuracy studies. We discuss these together with a discussion of confidence

bounds in this context, in Section 4.7.

2.5 Summary

In this chapter we have summarised the systematic review process, and the issue of
bias due to the methodological quality of the clinical trials. We have introduced our
key objectives of: 1) identifying relevant sentences within research articles, 2) ranking
articles by risk of bias and 3) reducing the number of assessments the reviewers need to
perform by hand. We have reviewed related work that has used text mining to assist or
automate systematic reviews. We have described our dataset and the method we used
to create it. Lastly, we have introduced key methods we use in subsequent chapters to
train and evaluate machine learning models.

Chapters 3 to 5 address our specified objectives. Firstly, in Chapter 3 we present a
novel metric to evaluate ranking models with particular constraints, and apply this to

the task of ranking articles for rapid reviews.
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Chapter 3

Rate-constrained ranking for rapid

reviews

In this chapter we show how rapid reviews can be formulated as a task with particu-
lar constraints, which we call rate-constrained ranking tasks. We introduce the rate-
weighted AUC (rAUC), a metric to evaluate the performance of ranking models for
rate-constrained ranking tasks. Much of the work presented in this chapter is published
in [27].

3.1 Rapid reviews — a new approach

As described in Section 2.1.1, a rapid review needs to be performed under strict time and
resource constraints, so it may not be possible to review all relevant articles. Currently,
a rapid review is performed by human reviewers who search online medical research
databases for articles reporting clinical trials of a particular research question [34]. In
order to retrieve a set of articles that can be reviewed in the allotted time, the reviewer
may iteratively refine the search query until the number of articles is deemed manage-
able. For example, a reviewer may restrict the search to articles in English language
only. This process is illustrated in Figure 3.1 (left).

As is the case for standard systematic reviews, an important consideration when
performing a rapid review is the quality of each study. Low-quality studies are more

likely to give a biased estimate of the research question and may need to be excluded

53
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from the review or considered with caution [77]. If not all relevant articles can be
included in the review then the reviewer would prefer those describing studies with low
risk of bias to have priority. Therefore, we should aim to maximise the number of high-
quality articles assessed, given the particular time constraints of the review. The iterative
search method described above is a rather crude approach that does not consider article
quality, and can be thought of as a classification of articles as included or excluded from
the review. We suggest that this can be greatly improved by instead learning a model for
estimating the article’s study quality, and using the model’s scores to rank the studies
under review, such that the most reliable research is assessed first. The reviewers can
then simply review the articles in decreasing order of estimated quality until they run
out of time. There is no need to classify the articles as included or excluded before
beginning the review.

Figure 3.1 (right) shows three alternatives of our proposed approach, all of which
rank the articles instead of iterating the search. Each of these approaches ranks the
articles and then, one article at a time (within the yellow box in this figure) the tasks of
screening, extracting information and the assisted risk of bias assessment are performed.
Performing these tasks one article at a time means that the reviewer can simply continue
until they run out of time. In contrast reviewers using the current approach need to make
sure they have time to screen all the articles then extract information from all the articles,
and so forth, such that they reach the evidence synthesis stage in the allotted time.

Use of the three alternatives in Figure 3.1 (right) depends on other progress in this
area. At the moment the search tools available cannot be queried precisely enough and
this means that the search results contain many irrelevant articles. Therefore it would
currently be most helpful to rank the articles by predicted relevance, as illustrated in
the left path (dotted yellow arrows) of Figure 3.1 (right). As described in Section 2.2.3,
automation of the search and screening stages are active areas of research, such that in
the future it is likely that the search will improve and articles returned will be mostly
relevant to the review. In this case we can rank the articles returned by risk of bias,
using the title and abstract returned in the search to predict the risk of bias scores of

each article, as shown in the right branch (dashed blue arrow) of Figure 3.1 (right).
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The centre path of Figure 3.1 (right) shows our idealized approach, which also re-
quires an automated retrieval of full text articles. At present the title and abstracts can
be automatically retrieved using the PubMed application programming interface (API),
but there is no easy method to automate the retrieval of full text articles. In the future
this should improve such that the full text articles can be used to predict risk of bias and
rank the articles.

In this chapter we assume that the search returns mostly relevant articles and full
text articles can be retrieved automatically, such that we are using the approach in the
centre path of Figure 3.1(right). We note however, that all three strategies given in

Figure 3.1(right) can be specified as a rate-constrained ranking task.

3.2 Rate-constrained ranking for rapid reviews

Our approach ranks research articles by study quality using a machine learning model,
such that the reviewer can assess articles from high to low study quality until they run
out of time. This suggests that a good model is one that exhibits good ranking behaviour
with respect to study quality, with particular emphasis on the proportion of articles that
can reasonably be processed. This proportion is not known before the review is per-
formed, because we cannot know exactly how many articles a reviewer (or reviewer
team) will be able to review. However, the total amount of time available for a review
and the number of articles returned from the initial search query is typically known.
Given an estimate of the time it will take a reviewer to assess a single article, the pro-
portion of articles in the search results that is expected to be processed can be inferred.
In terms of binary classification this proportion is the rate, the proportion of examples
classified as positive by a model (formally the predicted positive rate), defined in Sec-
tion 2.4.2. If the rate is known precisely, finding the best model is straight-forward.
Figure 3.2 illustrates this with two hypothetical ROC curves where neither curve
dominates the other. The two dashed lines show two example rate values that could be
inferred for a rapid review. We can see that the rate value affects which model is chosen.
The (solid) green model is chosen when rate = 0.5 and the (dashed) blue model is
chosen when rate = 0.3, as these models have the highest recall (Fp) at these respective
points on the ROC curves. We assess the models using recall because we would like

to assess the highest number of high quality articles in the allotted time. We refer to
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Figure 3.2: Two hypothetical ROC curves (x-axis: false positive rate, y-axis: true pos-
itive rate), example rate isometrics (diagonal lines with rate = 0.5 (top) and rate = 0.3
(bottom); the slope of —1 indicates a uniform class distribution) and example partial
AUC bounds (vertical lines).

these tasks as rate-oriented — the threshold is specified by a rate. This contrasts to the
standard method where the threshold is specified by a score, and the score predicted by
the model is compared to this to determine the classification of an example.

In this rapid review task however, the rate inferred depends on the time needed to
review a single article, and this is not known precisely. Articles vary in length and
difficulty and hence it is only possible to estimate a probability distribution across the
rate, rather than specify a single value. When choosing a model to rank articles for a
review, we can use this probability distribution to assess the performance of the models,
with consideration for the probability that the reviewer will stop at each point in the
ranking (because they are out of time). Rather than finding the known (estimate of)
recall at a particular position, as shown in Figure 3.2, we can only calculate the expected
recall, given these probabilities. For instance, a model might have recall r; at position

J, and recall ry at position k. If the number of articles that will be screened is twice as
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likely to be j compared with k, then r; will have twice the weight as r; when calculating
the expected recall.

We call this type of task rate-constrained — rate-oriented tasks where the threshold
rate is not known precisely before the ranking is processed. As we have alluded to,
an appropriate measure of rate-constrained ranking would average the true positive rate
across each value of rate, weighted by its probability. In this chapter we develop such a

measure.

3.3 The rate-weighted AUC (rAUC)

Common formulations of the AUC are given as an expectation of the true positive rate
across all false positive rates or thresholds (Equation 2.8). It is not possible to apply a
weight across rates using these formulations, because they are given in terms of expec-
tations over F; and ¢, rather than the rate. The following section derives the AUC as an
expectation across rates, such that the derived formula can be altered to weight the AUC
with respect to the rate.

As introduced in Section 2.4.2, accuracy isometrics in ROC space are lines of con-
stant accuracy with slope 7 /my [75]. Similarly, rate isometrics are lines of constant rate
with slope —m; /my. Examples are shown in Figures 3.3a and Figure 3.3¢ for uniform

and non-uniform class distributions, respectively.

Definition 3.1. Rate-accuracy space is a plot of rate on the x-axis and accuracy on the
y-axis. Rate-recall space is a plot of rate on the x-axis and recall on the y-axis. Where
positive recall is used, rate-recall space is denoted rate-Fy(r) space. Where negative

recall is used, rate-recall space is denoted rate-(1 — F;(r)) space.

We translate the ROC curve to rate-accuracy and rate-recall spaces using a linear
transformation, such that the AUC can be calculated in this space instead. The ROC
curve of Figure 3.3a is transformed into the rate-accuracy curve shown in Figure 3.3b,
and the rate-recall curves shown in Figures 3.3e and 3.3f, for positive and negative
recall respectively. We can see that the transformations into rate-accuracy and rate-
recall spaces result in unreachable areas. The upper bounds of the rate-accuracy and
rate-recall curves correspond to the ROC curve of a perfect classifier, and the lower

bounds to that of a pessimal classifier.
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(e) Rate-recall curve for the positive class of ROC
curve shown in Figure 3.3a.
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(f) Rate-recall curve for the negative class, of
ROC curve shown in Figure 3.3a.

Figure 3.3: Example ROC curves, rate-accuracy curves and rate-recall curves.
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Definition 3.2. The lower bounds in x-y space are given by a function f,,;, (x) specifying
the minimum possible value of y at each value of x. The upper bounds in x-y space are
given by a function f,,(x) specifying the maximum possible value of y at each value

of x.

We now focus on rate-accuracy space, but a similar derivation can be given for rate-
recall space (given in Theorem 3.5). In rate-accuracy space, the lower and upper bounds

of accuracy at rate r are given by:
accpin(r) = |m — 7| accmax(r) = 1—|my—r| 3.1)

These are derived from Equation 2.6 and the fact that acc,,;;, corresponds to points with
Fo = 0 when r < 7y and points with /7 = 1 when r > 7, and acc;,4, corresponds to
points with F; = 0 when r < 7y and points with Fy = 1 when r > 7.

Clearly, a ROC curve can only cross each rate isometric at a single point, which
allows us to reformulate the AUC in terms of accuracy and rates in order to apply a
weight across rates. Accuracy difference accy;y is the difference in the accuracy value

of the ROC curve with the minimum possible accuracy value for a given rate:
accgif(r) = acc(r) — accpin(r) (3.2)

Theorem 3.3. The AUC is equal to the normalised accuracy difference across all rates
re0,1]:

1
AUC = f accgif(r)dr (3.3)

acc JO

where K, 1s constant for a fixed class distribution:

1
Kuce = f (accmax(r) — acemin(r)) dr (3.4)
0

Proof. The transformation of a ROC curve to rate-accuracy space requires only linear
transformations from Fp and Fj into rate and accuracy, such that the relative areas under

and above the curve within the transformed bounds of the original ROC space remains
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the same. Therefore:

(3.5)

where K, is the total area within the bounds of rate-accuracy space, and area is the

absolute area under the rate-accuracy curve given by:

1
area = J accgif(r)dr (3.6)
0

This concludes the proof. [

This reformulation of AUC in terms of rates allows us to introduce a rate-constrained

generalisation.

Definition 3.4. The rate-weighted AUC of a ROC curve is the AUC weighted across
the rates:

rAUC =

1
J w(r)accgip(r)dr (3.7)
0

ace,w(r)

where w(r) is a density over the rate and K. ,,() is given by:

1
Kacew(r) = J() w(r) (accpax(r) — accmin(r)) dr (3.8)

In rate-Fy space, the lower and upper bounds of recall at rate r are given by:

-

Fomin(r) = max (o, : 1) Fomax(r) = min (1, i) (3.9)
7o 7o

These are derived from Equation 2.6 and the fact that F ,,;, corresponds to points with

Fy = 0 when r < 7y and points with F; = 1 when r > 7y, and Fg ;4 corresponds to

points with | = 0 when r < 7y and points with Fy = 1 when r > 7.

Theorem 3.5. The rAUC is equal to the normalised Fy difference weighted across all
rates. With a slight abuse of notation we use Fj(r) to mean F(F~1(r)).

1
rAUC = f w(r) (Fo(r) — Fomin(r))dr (3.10)

Fo,w(}') 0
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where

1
KFo,w(r) = J;) W(I’) (FO,max(r) *FO,min(r))dr 3.11)

Proof. The transformation of a ROC curve to rate-Fy space requires only a linear trans-
formation of Fj into rate, such that the relative areas under and above the curve within

the transformed bounds of the original ROC space remains the same. Therefore:

AUC — area

3.12
Ky o) 12
where Kp, () 18 the total weighted area within the bounds of rate-recall space, and area

is the absolute weighted area under the rate-recall curve given by:

1
area = L w(r)(Fo(r) — Fomin(r))dr (3.13)

This concludes the proof. [

Clearly, we can derive an analogous result using negative recall (1 — Fy(r)) instead
of positive recall (Fy(r)). The area under the rate-recall curve is the expected recall
(positive or negative) given a uniform distribution across the rates. This makes the
formulation of the rAUC in rate-recall space particularly interesting, as we can infer
the relationship between E[Fy| — the quantity we intend to maximise in rate-constrained
ranking — and the rAUC.

Rate-recall space, as shown in Figures 3.3e and 3.3f can be divided into 4 distinct
regions, for both positive and negative recall (labelled A-D and E-H respectively). We
use A both to label the region A and as the rate-weighted mass of this region (the area

of this region weighted by the rates it contains).

Theorem 3.6. The rate-weighted expected true positive rate is related to the rAUC,

given a distribution over the rates, by:
E[F]=(1-B-C)-rAUC +B (3.14)

where C = Sgo w(r) [”(’ﬂ—gr] drand B = S:rl w(r)%dr.
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Proof. Rate-Fy space is bounded by r =0, r = 1, Fy = 0 and Fyp = 1, such that the total
weighted mass of this area S(l) w(r)dr=1,hence A+ B+C+D =1. As rAUC = ﬁ,
it follows that:

_ A+B
A+B+C+D
—A+B=rAUC-(A+D)+B (3.15)

—(1-B—C)-rAUC+B

E[Fo]

Area C is the triangular region bounded by the lines r = 0, Fy = 1 and Fy = nio The

weighted mass of C is given by:

o _
czf w(ir) 2y (3.16)
0 7o

r—7m

Area B is the triangular region bounded by the lines r = 1, Fy = 0 and Fp = 0 The

weighted mass of B is given by:

This completes the proof. 0

B and C depend only on the class and weight distributions, which implies that the
relationship between E[Fy] and rAUC depends only on these and not the shape of the
ROC curve. Therefore, maximising E[Fp] is equivalent to maximising E[rAUC], which

means that rAUC is a suitable metric to evaluate models for rate-constrained ranking.

3.3.1 Algorithm to calculate the rAUC of an empirical ROC curve

We now use rate-accuracy space to compute the rAUC. A similar algorithm could be
implemented in rate-recall space (of either positive or negative recall). Algorithm 1
estimates the rAUC from an empirical ROC curve, where the number of positive ng and
negative n; instances is known (N = n| + ng). This algorithm is similar to the standard
AUC O(N) algorithm [73] where the ROC space is processed one vertical (or horizontal)

slice at a time.
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The rate-accuracy curve in Figure 3.4 corresponds to the ranking {001[011]0101},
where | | denotes examples with the same score, which we call tied examples. As can
be seen in this figure, the area under the ROC curve in rate-accuracy space is composed
of a series of vertical slices of width ]%] each corresponding to an instance. Ties sec-
tions may also exist, which correspond to a set of examples with the same score. Each
rate-accuracy curve AUC section corresponding to a set of tied examples may have: A)
vertical segments corresponding to tied negative examples, B) vertical segments corre-
sponding to tied positive examples, and C) a ties triangle. We divide ties sections into
these three component areas in order to easily calculate the rate-weighted mass of this
section, as we describe below. An example of a tied section with all three components
is given in Figure 3.4, between rates 0.3 and 0.6. This example has three vertical seg-
ments because three examples are tied, and these sit below the dashed lines shown in
this figure. The first two segments correspond to two negative examples and the last
corresponds to a positive example. Note how, although these examples are tied, when
considering only the vertical segments and ignoring the ties triangle, the negative ver-
tical segments precede the positive vertical segments in a ties section. This is shown
on Figure 3.4 by the dashed line first corresponding to decreasing accuracy (for the
negative vertical segments) and then to increasing accuracy (for the positive vertical
segments). The tied section also has a ties triangle, sitting above the dashed lines in
Figure 3.4 (consisting of T4 and 7). A ties section only contains a ties triangle when it
consists of both positive and negative examples.

The rAUC is calculated as a summation of the weighted mass of all vertical seg-
ments and ties triangles, normalised by the weighted mass of the whole rate-accuracy
space. The algorithm we propose has four functions: rAUC, SAUC, VAUC and TAUC.
The rAUC function is the main function that iterates through the ranking of instances
counting the number of positive and negative instances with the same score (and so in
the same tied section), and calling the SAUC function when a new score is reached.

The SAUC function calculates the weighted mass of a tied section of the rate-
accuracy curve, by calling the VAUC and TAUC functions. The VAUC and ties triangle
TAUC functions calculate the vertical segments (excluding ties triangle) and the ties
triangle, respectively. Each section is treated as a tied section even though this may
consist of only one example. The vertical sections of the negative instances are pro-

cessed before those of the positives because, as already mentioned, when there is a ties
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Figure 3.4: Example rate-accuracy curve with a ties section (set of instances with the
same score). Lengths and angles used to calculate rAUC are labelled.

triangle the shape of the area under this triangle in rate-accuracy space is given by the
area of the negative instances, followed by the positive instances in this ties section. For
instance, we can see in Figure 3.4 that the position of the dashed line above the tied
positive example would change depending on the number of negative examples in this

tied section.

The VAU C function computes the mass of a vertical slice of the area under the curve,
using two equations depending on whether the current instance is negative or positive.
The accuracy difference equation is used, which is computed in terms of r and either Fj
or F; depending if the example is negative or positive respectively (as for instance, if the
example is positive the value of Fj stays constant). For instance, the absolute weighted

mass of the vertical segment of negative examples is given by:

a, = fruw(r) (acc(r) —accpin(r))dr
riu (3.18)
:J w(r) 2moFo +my —r— |m —r|)dr

r

where r; and r, are the lower and upper rates of this segment in the ranking.
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The TAUC function computes the mass of the ties triangle. A ties triangle T is
composed of 2 sub-triangles T4 and T where T = T4 U Tg. T4 and Tp adjoin on line H,
where H is fixed along the rate isometric that passes through the right angled corner of
T (see Figure 3.4).

We calculate the mass of a ties triangle by first finding the length H and the rate at

Algorithm 1 The rAUC algorithm. scores: list of scores of instances, in decreasing
magnitude. x: list of class labels corresponding to the instances of score. ng: number of
positive instances. n1: number of negative instances.

procedure RAUC(scores,x,ng,ny)
7y < ng/(no+ny); m —ny/(ng+ny); N < ng+ny
a,<—0;TP<—0; FP 0
N, —0; N < 0; scorejes — —1
fori=1toN do
if score;jos = scores(i) then
if x; is POSITIVE then
Nt—l!—es - Nt—l!_es +1
else
Niies < Niies
end if
else
[FP,TP,a,] «— SAUC(ay,N;;,,N:t..,FP,TP,n;,ng)
if x; is POSITIVE then

+1

NtJires — 1Ny <0
else
Nt_l!—es — 05 Ny — 1
end if
sCoreyios < score(i)
end if
end for
[FP, TP,(,IM] < SAUC(CIM,NI;S,N{};S,FR TP,I/ll,l’l())

a<— K(w,my, )

rAUC « &

Return rAUC
end procedure
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Algorithm 1 (continued)

procedure SAUC(ay, N, Nt
it N, > 1then

ties

FP, — FP,FP — FP+N_

ties
a, <—ay,+ VAUC(FPprev, TP,FP,TPN, 0)
end if

if Nt > 1 then

TPpey < TP; TP« TP+ N

ties

ay < ay+VAUC(FP, TPy, FP,TP,N, 1)

FP,TP,ny, ny)

end if
if N, >1 & N >1then

ay < ay+TAUC(FP,TP,N,;,.,N;,.,N)
end if

Return [FP,TP,a,]
end procedure

procedure VAUC(F Pyy, T Pyrey, FP,TP,N ,label)
start < FPyrey + T Pprey
end — FP+ TP
fl - nTotafl(Znus
fO - nToth;;;)l’us
for i = start to end do
if label = O then

FPprev
FPprev‘_FPprev+1;f1‘_ 7

nTotalMinus

il
ay — ay+ §"N(w(r) 2my fo + w0 —r—|m —r|)dr

nTotal

else

TP, revs
TPpreV7(_TPpreV7+l;fO(_ L

i nTotalPlus
au<—au+ST(w(r’) (2 (r — M f1)+ m —r— | T — r| )dr
endit
end for
Return q,
end procedure

each corner of 7', labelled Py, P, and P; in Figure 3.4. Length H is given by:

H = M (3.19)

sin(c)
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Algorithm 1 (continued)
procedure TAUC(FP,TP,N_ N .N)

ties’ " 'ties’
ri < (FP+TP— (N +Nj,))/N
ry«— (FP+TP—N,,)/N
r3 — (FP+TP)/N
calculate H using Egns 3.19 —3.23
Ty = S:lzw(r) -H-—Ldr

rp—ri
Tp = Sgw(r)H (1—%) dr
T=T4,+1Tp
Return T

end procedure

where angle a, the angle of T at point Ps, is then given by:

a=tan~! (g) (3.20)

Angle b, the angle of 7 at point P is fixed at 45. It follows that angle ¢, the remaining
angle of Tp, is given by:

c=180—(45+4a) = 135—a (3.21)

The lengths F and G are given by:

F = \/Z(accl — accz)2 + (r— r1)2> (3.22)
G= \/Z(acq, — accz)2 + (r3 — rz)z) (3.23)

where acc; and r; are the accuracy and rate at point P, in Figure 3.4, respectively.

The weighted mass of the ties triangle is then the summation of 74 and 7g, which

are given by:

TA=Jr2w(r).H- TR gy ngrw(r)-H-(l— r_rz)dr (3.24)

r rn—n r3—nr
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where rq, r» and r3 are the rates at P, P, and P; respectively. These equations use the
fact that the height of a ties triangle at a particular rate r is proportional to the distance
between the minimum and maximum rates of this triangle, r| and r; for 74 and r, and
r3 for Tg. For Ty the height increases from r| to r, whereas for 7p the height decreases
from r, to r3.

The rAUC of a ROC curve is computed in O(N) time. Algorithm 1 appears more
lengthy compared to the standard AUC algorithm that is calculated in ROC space be-
cause each step across rate-accuracy space corresponds to a negative or positive instance
and the height of the curve changes within this step. The standard AUC algorithm makes
a step only when the instance is (for example) positive and (given this instance is not
tied with another) the height of the ROC curve is constant within this step. The change
in height at each step in rate-accuracy space means that the mass of the positive and
negative vertical sections (and ties triangle) can only be calculated after the ties section
has ended, hence the SAUC function is needed to do this.

3.4 Comparison of rAUC with other metrics

We have introduced a new ranking measure, the rAUC, that is able to account for con-
straints across rates, but several other metrics also exist to evaluate ranking models. In
this section we give an overview of related metrics, and provide formal comparisons of
these with the rAUC.

The AUC, defined in Section 2.4.2, is a popular choice to assess the performance of
ranking models. Intuitively, the AUC estimates the probability that a randomly chosen
positive instance is ranked higher than a randomly chosen negative instance, and thus
represents ranking performance across the entire dataset. Historically, the AUC has
often been used as a measure of ranking performance without consideration for the
particular task at hand. However, when the performance of a learner in particular regions
of ROC space has more importance than other areas for a particular task, the AUC is
not an appropriate choice.

Alternatives to the AUC have previously been suggested to allow differential impor-
tance across true positive or true negative rates, for empirical [78,79] and analytical [80]
ROC curves. These studies propose a partial AUC (pAUC) metric to restrict the eval-

uation of the AUC to a range of false positive or true positive rate values. The pAUC
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measure is appropriate when it is required that either the true positive or false positive
rates fall in a particular range. It is interesting to note that this is proposed for evalua-
tion of medical diagnostic tests [78]. Diagnostic tests assess how well a particular test
is able to detect a disease, and for tests that output a continuous value a ROC curve can
be created to evaluate this test. A researcher, for instance, may be interested in areas of
ROC space with low false positive rates because of high monetary costs incurred when

the false positive rate is higher [78].

We suggest that the pAUC metric could be generalised using weights rather than
bounds (as we have used for the rAUC), which may be more appropriate where there
is a non-uniform probability distribution across either the true or false positive rate.
Furthermore, a recent variant of the AUC called the half-AUC was proposed [81], and
evaluates the AUC in only half of the ROC space, either where true positive rate is less
than true negative rate or true positive rate is greater than true negative rate, giving two

distinct regions (either side of the descending diagonal) that can be assessed.

Early retrieval tasks are those where examples near the top of the ranking are more
important, as these examples are more likely to be processed. Several metrics have been
suggested for early retrieval tasks, where evaluation focuses on the top of the rankings.
Precision@k gives the precision of the top k results of a ranking, thus weighting each
example uniformly within this section of the ranking. For binary classes this is akin
to cumulative gain, which calculates the total number of positive examples up to (and
including) a particular position in the ranking [82]. Precision@k is the cumulative gain

at k, relative to the value of k itself.

Normalised discounted cumulative gain (NDCG) [82, 83], is one of several metrics
that give decreasing weights to examples along the ranking, as will be discussed in
Section 3.4.2. Others include robust initial enhancement (RIE) [84], the Boltzmann-
enhanced discrimination of ROC (BEDROC) [85], concentrated ROC (CROC) [86] and
sum of the log ranks (SLR) [87]. As we shall see in Section 3.4.2, the instance weights
used by these approaches all share the characteristic that they translate into monotoni-
cally decreasing rate weights. This is often not appropriate for rate-constrained ranking
tasks. For example, in our rapid review task it may be more likely that the reviewer stops
processing the examples midway through the ranking, compared with at the beginning

of the ranking.
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3.4.1 Experimental comparisons

We used 5 UCI datasets ! (vote, autos, credit-g, breast-w and colic) to generate a set
of models using 3 learning algorithms (naive Bayes, decision trees and one-rule). We
chose a binary variable for each dataset as the label, and learnt 10 models with each
dataset/model pair using bootstrap samples of 54% of the data, resulting in 150 gen-
erated models. We computed the AUC and NDCG metrics for each of these models.
We also computed the rAUC using 5 beta distributions as the weights across rates, with
alpha and beta (¢, ) values: (3,19), (7,15), (11,11), (15,7), and (19,3), shown in
Figure 3.5. We use beta distributions because they are constrained to values between
zero and one and rates are also constrained in this way. The o and 8 parameters were
chosen such that the modes of the beta distributions were equal distance apart across the
rates. We use NDCG with log base 10.

Figure 3.6 shows the AUC and NDCG values, compared with the rAUC values, for
each model. Each model is shown by 5 points with a single AUC / NDCG value and
variable rAUC value (for each of the 5 rate distributions of Figure 3.5). The variance of
the rAUC for each ROC curve across the 5 beta distributions ranges from 0 to 0.260 for

these datasets.

'UCI is a machine learning repository including freely available datasets.

a=3, b=19

-~ ~ a=7,b=15
a=11, b=11

a=15, b=7

© a=19, b=3

e L ;
0.4 05 0.6 0.7 0.8 0.9 1
Rate

Figure 3.5: Beta distributions across the rate.
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Figure 3.6: Comparison of metrics for 150 models generated with various learners,
datasets and distributions over rates.

For model selection, a monotonically increasing relationship between rAUC and
another metric would indicate no difference, because the same model would be chosen
using either metric. Spearman’s rank correlations between the model rankings using
each rate distribution are given in Table 3.1. A completely monotonically increasing
relationship (with no ties) would have a Spearman’s rank correlation of 1, and this
decreases towards zero as monotonicity reduces.

The correlation of the rAUC with the AUC varied between 0.872 and 0.975, de-
pending on the rate distribution, as illustrated by the positive association shown in Fig-
ure 3.6a. We should note that a proportion of the generated models have very high
AUC values, and therefore very high rAUC values for most rate distributions (see Fig-
ure 3.6a). To correct for this inflation of the correlation values, Table 3.1 also shows
reduced correlations when restricted to models with AUC < 0.95. The correlation of
the rAUC with the NDCG varied between 0.018 and 0.565, depending on the rate dis-
tribution, as illustrated by the weak associations shown in Figure 3.6b. Correlations
between the NDCG and rAUC metrics decrease dramatically when the mode of the beta
distribution increases, as expected.

The correlation between rAUC metrics using rate distributions that weight different

portions of ROC space is low in general. For instance, the rAUC values using rate
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a=3 a=7 a=11 a=15 a=19

B=19 B=15 B=11 =7 pB=3
NDCG 0.565  0.438 0.235 0.092 0.018
AUC 0.872 0951 0.975 0.927 0.886
AUC < 0.95 0.725 0.902  0.961 0.829 0.703
a=3p=19 0.923 0.791 0.676 0.610
a=7p=15 0.931 0.823 0.764
a=11B=11 0.964 0.925
a=15B=17 0.982

Table 3.1: Spearman’s rank correlations comparing the rankings of the 150 models,
ranked using the rAUC (with rate distributions of Figure 3.5), NDCG and AUC.

distributions with o = 3, B = 19 and @ = 19, B = 3 have a Spearman’s rank correlation
of 0.610. This highlights the importance of using a rate distribution with an appropriate
degree of uncertainty, as if it is incongruous with the true probability distribution a

suboptimal model may be chosen.

3.4.2 Comparing the weights of NDCG and rAUC

NDCG is given by:

n

1 1
NDCG = — - Z — (3.25)

K = logp(i+1)

where rel; € [0,1] is the label of the example at rank i, which can be continuous or
binary and denotes the relevance of the example. K is the maximum possible DCG for

a ranking of size n:

K= Z N (3.26)

NDCG weights each point in the ranking according to the probability that this in-
stance will be processed. In contrast, the rAUC weights each point in the ranking ac-
cording to the probability this point will be the threshold index, such that processing will
terminate at this point in the ranking. These formulations are closely related, since the
probability that an instance at position i is processed is the probability that an instance

at i or after position i is the threshold index. For example, if a person is processing 20



74 CHAPTER 3. RATE-CONSTRAINED RANKING FOR RAPID REVIEWS

articles, the probability they will review the article at rank position 10 equals the proba-
bility they will stop processing articles at a position between articles 10 and 20. Hence,

the relationship between the two weighting methods is given by:
Winslance(i) =1- CDFW,;WX;,OM (l) (3.27)

where i is the position in the ranking and CDF denotes the cumulative distribution func-

tion.

The instance weights of NDCG are shown in Figure 3.7a, and the equivalent thresh-
old weights are shown in Figure 3.7b. We can see that the weight of each threshold
index decreases as we move further down the ranking. This is a key restriction of the
NDCQG (and related metrics), as it is not always the case that a ranking is more likely
to be processed up to the rank positions nearer the top, as in our motivating example.
Figure 3.7b also shows an example density across thresholds, using a beta distribution,
where processing is most likely to stop at a rate of 50%. The corresponding instance
weights are shown in Figure 3.7a. This weight distribution assigns several of the top-
ranked instances the highest weight, something which is not possible with NDCG.
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likelihood an instance will be processed. likelihood a rate will be the threshold position
(the instance at this rate will be the last to be pro-
cessed).

Figure 3.7: NDCG discrete weights (using log base 2) assuming 20 instances and rAUC
continuous weights using beta distribution (o = 30, B = 30). Weights across instances
in left figure are equivalent to weights across thresholds in right figure, respectively.
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3.5 Application to screening for rapid reviews

We demonstrate the rAUC using our motivating example described in Section 3.1 —
ranking research articles for rapid reviews of clinical trials. We formulate this task in
terms of a rate-constrained ranking problem. To reiterate, the articles are ranked by esti-
mated study quality, and the objective is to maximise the number of high-quality articles
the reviewer assesses given the rate constraints. In this setting, the rate is the proportion
of articles that the team reviews, which is not known precisely. The search will return
A articles and the reviewers are allotted 7 minutes to complete the review. We use
elicitation to determine appropriate parameters for the rate distribution, a method com-
monly used in epidemiology to establish feasible parameters for a distribution where
there is no data from which to infer this. For simplicity, we consider the case of only
one reviewer, who estimated the minimum (#p) and maximum (#1) time per article, ¢, the
number of minutes they will on average expect to take to assess a single article. Also for
simplicity, we use the blinding risk of bias property as a measure of quality. We assume
our idealised situation given in the centre path of Figure 3.1b, where we have a set of
relevant full text articles and we would like to rank them by predicted risk of bias.

We model ¢ as a inverse beta distribution (with bounds [%, o)), having 0.95 proba-
bility of being in the range [fo,; ]. The rate (the proportion of articles that are reviewed)
is given by: r = A%. This relationship with ¢ infers a beta distribution across the rates.
This assumes that a reviewer will not finish processing all the articles within the time
allocated such that r € [0, 1].

We suppose a hypothetical and realistic rapid review where the search returns A =
2,500 articles and a reviewer is given 120 person hours (7" = 7,200 minutes) in which to
perform the review. We imagine that the reviewer states they will take between 10 and
45 minutes to assess a single article, which we use to specify two quantiles of 7 (0.025 =
CDF;(0,10) and 0.975 = CDF;(0,45)) which we convert to equivalent quantiles of r
(0.975 = CDF,(0,0.288) and 0.025 = CDF,(0,0.064)). We use the beta.select function
of the LearnBayes R package [88] to find the o and 8 parameters with these quantiles,
giving @ = 6.23 and 8 = 32.80 (shown in Figure 3.8).

We learn several models and then evaluate these using the weight distribution across
rates that we have just specified, to determine which should be used to rank the 2,500

articles in the rapid review. We use a dataset consisting of 315 full-text articles reporting
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the results from randomised controlled trials, each labelled with a binary value denoting
whether blinding has been adequately carried out (low vs not-low), as described in the
article. These are a subset of articles with a label for blinding given in Figure 2.5,
from an earlier version of this dataset. There were an approximately equal number of
articles of each class. We created a set of preliminary models using a bag of words
representation (with unigrams), and evaluate these using 10-fold cross validation. To
be clear, we learn and evaluate models using our labelled dataset and use these results
to determine which model is expected to give a higher performance given the specific
rapid review defined above (with 2,500 articles).

We generated consensus ROC curves for 3 learning algorithms: random forest, naive
Bayes and support vector machine (SVM) (with a linear kernel), shown in Figure 3.9.
We used rate-averaging to generate our consensus curves, as described in Section 2.4.2.
This is appropriate for our rate-constrained task as the points of the consensus curves

are the average performance given a particular rate constraint.

The random forest, naive Bayes and SVM models gave a mean rAUC (AUC) of
0.689 (0.636), 0.781 (0.639), and 0.639 (0.570), respectively, across the 10 folds. A two-
tailed paired t-test of the AUC values of each model across the 10 cross validation folds,
found no difference between the random forest and naive Bayes models (P = 0.884).

A t-test using the rAUC values found the naive Bayes model is better than the random

PDF
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Figure 3.8: Beta distribution of weights across rates for rapid review.
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Figure 3.9: Consensus ROC curves (using rate-averaging) predicting the blinding risk of
bias value of research articles. The blue shading depicts the beta distributed weighting
across rates. The mode, at rate = 0.14 has the highest weight, and at this point on the
ROC curve (and nearby points) the naive Bayes model has a higher recall compared to
the random forest and SVM models.

forest model for this rate distribution (P = 0.021). The random forest and naive Bayes
models clearly dominate the SVM model such that the SVM model would be inferior for
any rate distribution. However, we have shown that while the random forest and naive
Bayes models are similar in terms of ranking performance across the entire ranking, the
naive Bayes model is much better than the random forest when considering which rates

are more likely for this particular rapid review.

We thus clearly see that the weight distribution for rate-weighted AUC can be de-
rived directly from the parameters of the rapid review task, in a way that could not be

achieved with metrics such as the pAUC.
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3.6 Summary

In this chapter we have introduced a new ranking measure, the rate-weighted AUC
(rAUC), to better reflect model performance when the task is constrained by a probabil-
ity distribution across the predicted positive rate, which we refer to as the rate. The AUC
is equivalent to the rAUC given a uniform distribution across the rates. Furthermore,
if the rate is fixed then models can be compared by simply comparing the recall at the
point on the ROC curve with this rate. We have derived the rAUC from rate-accuracy
space, and introduced rate-recall space as a visualisation of model performance. Fur-
thermore, the rAUC is a linear transformation of rate-weighted expected recall (both
the positive and negative respectively), given fixed class and rate distributions. We have
described an O(N) algorithm to calculate an estimate of the true rAUC using a data
sample.

Our experiments have shown large variability of the rAUC as the rate distribution
varies. A comparison with NDCG found low correlations indicating that when the like-
lihood that processing will stop at a particular position in the ranking is lower nearer the
top of the ranking than elsewhere, NDCG may be inappropriate. Furthermore, a com-
parison with the AUC shows that often the rAUC prefers different models. Finally, we
have also demonstrated how this approach can be usefully applied to real world tasks,
using the example of ranking research articles for rapid reviews of clinical trials.

In addition to ranking articles for rapid reviews, there are many other tasks that
are rate-constrained, with uncertainty across the rates. In general these tasks are rate-
oriented with the additional property that the rate is not known precisely prior to pro-
cessing examples along the ranking. This occurs because these tasks are restricted to
a fixed budget of a resource such as time or money, where the exact expenditure for
each instance is not known precisely. The aim of a rate-constrained ranking task is to
maximise the expected true positive rate given the uncertainty across the rates. Another
example is telephone sales, which is restricted by the allocated number of person hours,
such that when ranking a database of customers to determine those most likely to show
interest, it is not known exactly how many customers will be contacted as the time per

phone call is variable.



Chapter 4
Rate-oriented confidence bounds

In this chapter we continue the rate-oriented theme and present a novel method of gener-
ating confidence bounds around ROC curves. We call this method rate-oriented point-
wise confidence bounds. These bounds are particularly appropriate for rate-oriented
ranking tasks, including those that are rate-constrained. We derive our approach from
first principles and demonstrate its effectiveness experimentally. We start by providing
an overview of existing approaches to creating confidence bounds around ROC curves.
The work in this chapter has been published in [28].

4.1 Approaches to create ROC confidence bounds

As described in Chapter 2, ROC curves are informative visualisations of model perfor-
mance that show the ranking performance at different regions of a ranking, or the per-
formance of a scoring classifier at each possible choice of operating point. ROC curves
are often used to determine if one model is better than another, and confidence bounds
provide a measure of the uncertainty such that this can be determined, for a specified
confidence level. Recall from Section 2.4.2 that several ROC curves can be combined to
produce a single average curve, called a consensus curve. The variation between the in-
dividual curves can be used to estimate a confidence around the consensus ROC curve.
Several methods have been proposed to generate confidence bounds, mainly parametric
approaches such as vertical [89] or threshold [90] averaging. While we focus on these

approaches here, in Section 4.7 we describe other approaches that have been proposed,

79



80 CHAPTER 4. RATE-ORIENTED CONFIDENCE BOUNDS

such as those for meta-analyses of ROC curves for systematic reviews of diagnostic
tests.

The vertical averaging method to generate a consensus curve, as described in Sec-
tion 2.4.2, can be extended to generate a confidence band by calculating the standard
deviation across the true positive rate at each point on the curve, and using this to gen-
erate a confidence interval. A similar procedure can also be performed with horizontal
averaging. These are simple approaches to implement but have several shortcomings.
Firstly, the false and true positive rates are metrics over which we have little control,
such that it is difficult to set a threshold at a particular value. It is therefore preferable to
evaluate a ROC curve with respect to a metric with which setting the threshold is simple
in practice.

Secondly, vertical and horizontal averaging are not invariant to swapping the classes,
such that if the x-axis and y-axis of ROC space become the false and true negative rate
respectively, equivalent points will have different confidence bounds. The example in
Figure 4.1 shows that vertical averaging in the original ROC space is equivalent to
horizontal averaging in the swapped space. This is because the swapped space is a
line mirroring of the original space along the descending diagonal. Finally, depending

on the distributional assumptions of points at each false (or true) positive rate value,
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(a) Original ROC space (b) ‘Swapped’ space, in terms of the negative class

Figure 4.1: Vertical and horizontal averaging correspondence when ‘swapping the
classes’. Swapped space is a line mirroring of original space along descending diag-
onal. Two gray points are averaged to consensus point (starred) with vertical averaging
in original space (left). To do this in swapped space (right) horizontal averaging must
be used.
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the confidence bounds may not be constrained to the bounds of ROC space, such that
tpr € [0,1] and fpr € [0,1] (where tpr and fpr are the true and false positive rates
respectively).

Threshold-averaging is similar to vertical (and horizontal) averaging but instead
fixes the score and averages over each cloud of points in ROC space with the same
score (shown in Figure 2.15). This has the advantage that we can easily use thresh-
olds set at a particular score, classifying each example by whether its score is below
or above this threshold value. However, how best to generate confidence bounds for a
set of points that are not constrained to a single dimension is not obvious. Fawcett et
al. suggest averaging separately across false and true positive rates [90], but this creates
a rectangular shaped bound for each score where a smoother bound would seem more

natural.

4.2 Overview of our approach

To address the shortcomings of existing methods, we specify a set of properties we
would like our confidence bounds to satisfy. Firstly, the generated confidence bounds
should be invariant to swapping the classes, as described above. Secondly, the confi-
dence bounds should be constrained to sit within the bounds of ROC space at all points
along the lower and upper confidence bounds. Thirdly, we are particularly interested in
generating confidence bounds around ROC curves that evaluate models of rate-oriented
tasks. These tasks may also be rate-constrained such as the example of ranking articles
for rapid reviews described in Chapter 3.

We suggest that when a task is rate-oriented, the consensus curve should be gener-
ated in a rate-oriented manner, such that each consensus point along the curve is gen-
erated with respect to a particular rate. The rate-averaging approach described in Sec-
tion 2.4.2 is one such method. Furthermore, the comparison of several models should
use confidence intervals also created at each rate value, which we call a rate-oriented
approach, such that they can be compared with respect to the rate.

Our aim is to generate confidence intervals for a consensus curve at each rate value,
such that at significance level o the consensus curve of a set of new samples generated
from this consensus curve (or precisely from the set of ROC curves from which the

consensus curve was generated) pass between the lower and upper confidence limits at
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Figure 4.2: Rate-oriented confidence bound illustration showing a consensus curve
(green solid) generated with rate-averaging, and the upper and lower confidence bounds.
Each yellow line denotes the 95% confidence interval at a particular rate. Confidence
intervals at rate = 0.3 and rate = 0.4 are emboldened. The smoothed consensus curve
(blue dashed) is also generated with our confidence bounds approach. We have in-
terpolated between the upper and lower bounds of the confidence intervals to create a
confidence bound around the whole curve.

a given rate value, with probability 1 — . The series of confidence intervals creates
a confidence bound around the consensus curve. We call these point-wise confidence
bounds in line with [91] in order to differentiate from the common meaning of ROC
confidence bands, where the confidence refers to the proportion of whole curves sitting
entirely inside the confidence band. Where we discuss methods that are solely used to

generate a bound around the whole curve, we explicitly refer to these as bands.

An illustration of our rate-oriented point-wise confidence bounds is given in Fig-
ure 4.2. This figure shows a consensus curve and the generated point-wise confidence
bounds. Each confidence interval sits along a rate isometric, and in this example we have
generated 19 confidence intervals at rate intervals of 0.05. The upper and lower confi-
dence bounds are composed of the upper and lower bounds of the confidence intervals,
respectively. We have interpolated between the confidence intervals to approximate the

bounds of intermediate rates. As we shall see, our approach also infers a new smooth
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consensus curve, shown in this figure by the blue dashed curve.

Confidence bounds are useful to determine where in ROC space a consensus curve
is likely to sit. In particular, our rate-oriented point-wise confidence bounds allows us
to see the expected performance of a model as the rate varies. For example, in our
example in Figure 4.2 we can see that at rate = 0.3 the recall (tpr) is expected to be
between around 0.34 and 0.52. Increasing the rate to 0.4 however means that a recall
between 0.47 and 0.67 is expected. A researcher may use this information to determine
the best rate value to use as a threshold, according to the level of performance they
require. Of course, while here we used recall any other classification metric that can
be inferred from ROC space (such as accuracy) can be assessed in this rate-oriented

manner.

4.3 Introducing ROC tables

ROC tables are a tabular form of empirical ROC curves. Formally, a ROC table such as
that shown in Table 4.1, is a matrix with m rows and n columns, containing the results of
independent tests using m samples, such as m-fold cross validation. It is the evaluation
on the test data that is independent, not necessarily the training data, as is the case for
cross validation with overlapping data in each training set. We discuss the implications
of the degree of training set dependence in Section 4.8. We now introduce notation
pertaining to ROC tables specifically, which extends the notation given in Section 2.4.2

for single rankings.

k
Vik 1 2 3 n-1 n Sik Si1 o Si2 83
Samplel [0 0 1 11 Samplel [1 2 2
Sample2 [0 1 1 0 1 Sample2 | 1 1 1
Sample3 [0 0 O 0 1 Sample3 |1 2 3
Sample4 |0 1 O 1 1 Sample 4 | 1 1 2
POSk 4 2 2 2 0
Table 4.1: Example ROC table, with Table 4.2: Example s; ; values (number
m = 4 samples and n columns, and posy of positive examples up to column & in

positive examples in each column. a sample) for example ROC table (left).
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Each cell of a ROC table contains the label y;; € [0, 1] of the example at position
k along the ranking of sample i, where the examples of each sample are ranked by
increasing score. A segment of consecutive positions in a ranking having the same
score are assigned a fractional label to account for this — the average of the labels in this

segment, calculated as:
/
yq..q’ 1 +q Zyj (41)

where ¢ and ¢’ are, respectively, the start and end of the position range with equal
score. The number of positives and negatives in a ranking are denoted by ng and n;

respectively, such that n = ng + ny.

The number of positives across samples at column k in the ROC table, denoted posy,

is given by:
m

posi =Y (1—yix) (4.2)

i=1
Examples of pos; are given in Table 4.1. The number of positives up to position k of
row i in the ROC table, which we refer to as the true positive value (as opposed to the

true positive rate) and denote by s; , is given by:

k

Sik = Z (1-yij) (4.3)

j=1
Examples of s;; are given in Table 4.2 for the ROC table shown in Table 4.1. The
number of positives up to position k across all samples in the ROC table, denoted sy, is

given by:
k m

N Z pos; = ZS,'J{ (44)

j=1 i=1

Recall (of the positive class) is the proportion of positive examples correctly classified
as positive, at a given point on the ROC curve (also known as the true positive rate).
We specify this in terms of a row of a ROC table. The recall, tpr; , of sample i with

operating point at position k is given by:

Sik
Iprijg = —~ 4.5)
no
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We denote an unsorted list of n items as a;,az . .. a, and a sorted list as a(y),a(z) - - - a(y)-

4.4 Rate-first sampling: a method to generate sample
ROC curves

As discussed in Section 2.4.2, a ROC curve is an alternative representation of the cu-
mulative distribution functions of two classes. Given the score probability distributions
of each class, sample rankings and hence sample ROC curves can be generated using
this distribution. For instance, we can sample a score from the mixed probability dis-
tribution and then sample a label using the probabilities of each class at this score, for
each example in the new ranking. We call this score-first sampling, shown in Table 4.3
left. Example score densities are shown in Figure 4.3a, and the corresponding ROC
curve is shown in Figure 4.3b. Figure 4.3b also shows sample ROC curves generated
by sampling the score density functions, and are seen to vary about the true analytical
ROC curve.

Given a ROC curve, we can sample this directly instead of using the score densities,

by sampling across the rate. The gradient g = % on the ROC curve is the class likelihood

ratio, from which we can calculate the class probabilities at this point on the curve. The

Score-first: Rate-first
Repeat n times: Repeat n times:

Sample score 5; ~ f Sample rate r; ~ uniform(0,1)

Sample label y; ~ bernoulli(mys;) To,r, < calculated from gradient at r; on ROC
Rank labels by score s; curve

Sample label y; ~ bernoulli(m,,)
Rank labels by rate r; and introduce ties due to lin-
ear ROC segments

Table 4.3: Two sampling approaches. Left: score-first approach. Right: rate-first ap-
proach. 7, is the probability of a positive at score s; (which is the score at position j
in a ranking).
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Figure 4.3: Example analytical score densities with corresponding analytical ROC
curve, and example empirical ROC curves generated by sampling the true score den-
sities.

probability of a positive at rate r;, denoted mp ,;, is given by:

7o fo

T mfo+ A
Tog 4.6)

a Tpg + T

77'-0,}’1'

where rate r; is the rate at position j in a ranking.

We can then sample a label using this class probability. We do not need to know the
scores because the rate also determines the order of the examples in the ranking, and
the ROC curve determines the class probabilities at each rate. We do, however, need to
know which examples were sampled from the same linear segments of a ROC curve, as
these samples should be tied in the generated ranking, rather than ordered by rate. We
call this the ‘rate-first’ approach, given in Table 4.3 (right). This approach is similar to
inverse transform sampling where a value of CDF (x) is sampled uniformly (between 0O
and 1), which infers a score, and then the class distribution at this score can be used to
sample a label. This is because (as introduced in Section 2.4.2) the rate is the cumulative
distribution of the mixed probability distribution.

An example of inverse transform sampling is shown in Figure 4.4, for a discrete
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distribution with three score values. In this example the CDF is sampled at 0.68 which
samples score = 2. Sampling uniformly across rates corresponds to sampling uniformly
across the CDF (the y-axis of Figure 4.4b), and these approaches are equivalent to sam-
pling the scores according to the mixed probability distribution function. However, in
the rate-first approach we can go directly from sampling a rate to sampling a label, with-
out the need to know the score. Tied examples generated by sampling from the same
linear segment of a ROC curve corresponds to sampling the same score with the score-
first approach or inverse transform sampling. For example, in Figure 4.4 sampling CDF
values of 0.6 and 0.4 would both sample score = 2 and so these examples would be tied

in the generated ranking.

4.5 Generating confidence bounds

In this section we give our approach to generating rate-oriented point-wise confidence
bounds. This uses the rate-first sampling approach just described. We begin by de-
scribing a simple approach of inferring confidence bounds, used as a baseline in our

experiments (described in Section 4.6).
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class)

Figure 4.4: Illustration of inverse transform sampling. Score 2 is sampled, and then a
class is sampled with probability 0.35 and 0.25 (assuming a uniform class distribution).
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4.5.1 Baseline method

We use a simple parametric approach as a baseline method. This method is similar
to previous approaches such as vertical averaging, but we fix the rate (the predicted
positive rate) rather than the false positive rate, in line with our aims. We calculate
the mean and variance of recall across samples and, after making an assumption of the
underlying distribution across the ROC points of each sample at each rate, calculate the
95% confidence intervals. Here we use positive recall as a distance measure along rate
isometrics in ROC space, but any metric that varies linearly along rate isometrics could

also be used (such as negative recall or accuracy). An example is given in Figure 4.5.
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Figure 4.5: Illustration of baseline approach to generating confidence bounds. The rate
% is indicated by the emboldened rate isometric. The recall of the two curves at this
rate is 1.0 and 0.75, and the rnean recall is 0.875 (indicated by the green point). The
variance is then calculated as 51 [(0.75 — 0.875) + (1 —0.875)%] = 0.0313.

The variance across samples at position k along the ranking is given by:

sd} =

m
2
p— 1; tpr,k—tprk “4.7)

where m is the number of samples, #pr; 4 is the recall for sample i at position k and 7 pr;,

is the mean recall across the samples, at position k. The standard error (the standard
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deviation of mean sample recall) at each position k along the ranking is given by:

Sdk

N

To be clear, we are interested in the sample mean because we would like an interval

O = (4.8)

for future consensus curves generated from a set of m ROC samples, rather than the

individual ROC samples themselves.

In order to infer a confidence interval we need to assume a particular distribution
across the recall of consensus curves at each position k. Assuming a normal distribution

the confidence intervals are given by 7pr;, +1.96 - ;.

We also test this method using a beta distribution, which is bounded by [0, 1] such
that we can constrain our confidence intervals to the bounds of ROC space. The bounds

of Fy at each rate, as introduced in Section 3.3 are given by:

— 7T
Fo fmin = max (0, ! 1) (4.9)
b nO
Fosoma =min(1,i> (4.10)
vy 7t0

To use the beta distribution we rescale, at each position k, each sample recall value
r—7m
T

from the range max <0, ) ...min (1, ”LO), where r = % is the rate at k, to the range
0...1. We calculate the mean and standard deviation of these scaled recall values at

each position k, directly from the mean and variance calculated on the unscaled recall

values: _
FO k— FO k,min
Hpetak = ’ - (4.11)
o FO,k,max - FO,k,min
2
2 O
o2 . — (4.12)
betak (FO,k,max - FO,k,min)2

The parameters oy and f; are then calculated using standard definitions of the mean and

variance of a beta distribution:

O
o + P

Hpetak = (413)
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2 o Br
O, = 4.14
betak = oy + Br)2(og + Br + 1) (*19)

Such that:

Mpeta, (1 — Hp

o+ P = ““"ég : crar) | (4.15)
eta,
O = Hpetak - (0% + Pr) (4.16)
o
Br = — O (4.17)
Hpetay,

The lower and upper recall confidence intervals are then found in the range O to 1 by
using this beta distribution to find the values where cd f = 0.025 and cd f = 0.975 re-

spectively. We then rescale this back to the original scale:

Fo (x; k) =X (FO,k,max - FO,k,min) + FO,k,min (4- 18)

4.5.2 Overview of the rate-oriented point-wise confidence bounds

approach

We assume a random process that generates ROC tables of size n-m from the score
probability distributions. Let us denote by S; ; the random variable of the sum of the
number of positives from position 1 to position k. Formally, for any fixed true positive

value s at this position, with ng and n; all fixed, we want to estimate:

_ P (Sik =5,Sin=no)
S (Six=5Sin=no)

We condition on the class distribution to reflect the fact that a data sample has a

P (Six =5 |Sin =no) (4.19)

finite number of examples with a certain number of each class. This also corresponds
to the fact that ROC curves must pass through the points (0,0) and (1,1). We present
two different methods, a parametric and a bootstrap approach. We derive the probability
distribution across the number of positives up to a position, &, in a sample, and use this
to infer these two approaches. The bootstrap approach is particularly useful where the
distributional assumptions of the parametric approach are invalid.

Importantly, our approach is naturally invariant to swapping the classes. In ROC

space when classes are swapped the x-axis becomes the false negative rate (1 —tpr),
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and the y-axis becomes the true negative rate (1 — fpr). The rates in the swapped space
are given by r/(t) = mo(1 —tpr) + m (1 — fpr) = 1 —r(r). Hence, for each set of points
along a rate isometric in the original space, there is a corresponding rate isometric in the
‘swapped’ space along which this set of points also lie. The confidence bounds along

these corresponding rate isometrics will have equivalent confidence intervals.

4.5.3 Parametric approach

We find the probability distribution across the number of positives from the first position
to a position k in the ranking, S; ;. We first derive an analytical solution (Theorem 4.1),
and then provide an empirical version that can be computed directly using the ROC
curve. At this point we fix i as we refer only to a single sample, so that S; ; is denoted
Sk and S; , is denoted S,,. To be clear, we are using a ‘true’ ROC table / consensus ROC
curve, and sample this to generate a new sample ranking (one row of a new ROC table).

After this, we give an extension to generate whole sample ROC tables.

Theorem 4.1. Let the score densities, fy and f], and the number of examples of each
class in the sample, ny and ny, be fixed. Then:

p(Sk = Svsn = I’l())

1
=f [binom(s,k—1,71:0<r)-(1—7t0=r)+bin0m(s—1,k—1,7r0<r)~(7t():’ )] (4.20)
0

-binom(ng —s,n—k,ﬂ'()wl) -p(Ri = r)dr’

where
< ﬂOFO(t)
my" = < ﬂO(l_FO(t))
moFy(t) + mFi(t = 4.22
0Fo(r) + m 1((3.21) o mo(1 —Fo(t)) + m (1 —F(z)) 22
- n-OfO(t)
o C mofolt) Fmfi(e) (429

t = F~(r), p(Ry = r) = beta(r,k,n—k+ 1), Ry is the random variable denoting the rate

from which the example at position k was sampled. 7’ is the rate that is sampled whereas
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k is the position in the new sample, such that 7’ has a corresponding kK’ where ' = fT; and
k has a corresponding » where r = % binom(ky,nyp, pp) is the binomial distribution for kj,
successes in ny, trials, with probability of success pj, and beta(x,a,b) is the probability

of value x for beta distribution with & = a and 8 = b.

Proof. To compute the left hand side of Equation 4.19 it is sufficient to compute:

p(Sk=s5,S, =np) (4.24)

The probability of S = s and §,, = ng in the new sample depends on which rate it was

sampled from, such that:

|
p(Sk=15,8,=ng) = f p(Sk=5,Sa=no|Re=7r") p(Re =r)dr (4.25)

0
The order statistic states that when sampling n values uniformly within the range 0..1
and sorting these examples, the probability that an example at position k£ was sampled
from arate r’ is beta distributed with @ = k and 8 = n—k+ 1 [92]. Therefore, p(Ry =r’)
of Equation 4.25 is the beta density.

The other component of Equation 4.25 is the probability of s positives up to a posi-
tion k, given the example at this position is sampled from a particular rate /. There are
two cases where value s is the number of positives up to a position k: 1) s — 1 positives
occur before position k and the example at k is a positive, or 2) s positives occur before
position k and the example at position k is a negative. In either case there must also be

no — s positives after position & to ensure that the class distribution is correct.

The examples before position k can be sampled independently, with probability of
a positive given by Equation 4.21. The examples after position k can also be sampled
independently, with probability of a positive given by Equation 4.22. The independence
between samples is valid because we are sampling a set of unordered examples. Intu-
itively, the position of a particular point on a ROC curve is independent of the order of
the examples that preceeds it, it is only the number of positives and negatives that mat-
ters. This means that the probabilities of the set of examples before and after position k

are binomially distributed, which infers:
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k—1 k—1
= [p (Z(l —yi) = S> pyk=1)+p (Z(l —yi) =5 1) Pl = 0)]
-p( > (I_Yi):n0_5> (4.26)

i=k+1

— |binom(s, k1,5 - (1 = 75"") + binom(s — 1,k —1,75"") - (x5

-binom(ng — s,n—k, ;")

Using Equation 4.26 in Equation 4.25 concludes the proof. 0

To reiterate a key point — an example at position k has rate r for a newly sampled
ROC table, and we can imagine this table is sampled from an initial ROC curve. The
rate ' from which it is sampled on the ‘true’ ROC curve is probabilistic, corresponding
to p(Ry = r') in Equation 4.20. The class probabilities used to generate the example at
position k are determined by the class distribution at the rate ' from which this example
was sampled.

Imagine, for instance, that we wish to generate a ranking by sampling the ROC
curve in Figure 4.6a. Imagine also that we are now sampling the example at position 16
of 20 such that » = 0.8. Figure 4.6b shows the beta distribution used to sample a rate,
with parameters & =k =16 and B =n—k+ 1 =5, and mode 0.8. From this distribution
rate ¥’ = 0.6 (shown on Figure 4.6a) may be sampled, and it is this position on the ROC
curve to which the probabilities before, at and after of Equations 4.21 - 4.23 refer.

An important aspect of Theorem 4.1 is that the sampling probabilities before, at and
after rate ' (Equations 4.21 - 4.23) can be computed solely using the ROC curve (as-
suming the class distribution is also known). Recall from Section 4.4 that Equation 4.23
can be calculated from the gradient at ¥ on the ROC curve. We can also infer the val-
ues of Equations 4.21 and 4.22 from the ROC curve. Equation 4.21 is equivalent to
the average probability of sampling a positive across all rates before 7/, and this can
be inferred from the gradient of the straight line from point (0,0) to the point at ¥’ on

the ROC curve (shown in Figure 4.6a). Similarly, Equation 4.22 can be inferred from



94 CHAPTER 4. RATE-ORIENTED CONFIDENCE BOUNDS

i
(=}

0.9F 9,
c
08 _ _ _ _ _ o ______ 8’
0.7 B 7,
0.6 6,
u® osr é 5
0.4F 4,
A
0.3F 3,
0.2F 2
0.1 1r
0 0‘1 0‘2 0‘3 0‘4 0‘5 0‘6 0‘7 O‘B D‘Q ‘1 00 0‘2 04 06 0‘8 1
F1 Rate
(a) ROC curve from which new ranking is sampled (b) Distribution across rates, p(Ry = r)

Figure 4.6: Illustration of rate sampling. Sampling position k = 16 of a sample with
20 examples, such that the mode of Beta distribution is 0.8. This distribution is used to
sample the original ROC curve (left), at rate of 0.6. The gradient at this rate is used to
sample the 16th position in the new sample. Line A has gradient % Line B has gradient

f . . 1-K
T?' Line C has gradient {— F(f'

the gradient of the straight line from the ROC curve point at 7’ to the point (1, 1) (also
shown in Figure 4.6a). For example, for the rate sampled on the ROC curve in Fig-
ure 4.6a Fy(t) ~ 0.77 and Fj(t) ~ 0.42, and the gradient of the straight line connecting

this point with the origin is ~ 1.8 and this infers 775" '

Theorem 4.1 gives the analytical calculation but we cannot use this directly in prac-
tice, as we have empirical ROC curves / ROC tables rather than the score densities.
Firstly, our empirical ROC tables have discrete rates such that in the discrete case the
integral of Equation 4.25 is changed to a summation. We implement this as an aver-
age of the joint probability, for a set of rates of the CDF of the beta distribution (the

sampling distribution for this k) at each 0.01 interval:

99

p(Sk=5,Sy=n0)=> p(Sk=5S=no| R =F,,. (0.01¢
( ) 121 ( | peta ) @27

-p(Ry = F,,} (0.01-1))

such that we sample the rates at each 0.01 interval of the CDF of the beta distribution
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(with ¢ = k and B = n—k+1). This CDF models the probability that an example
at position k is sampled by each rate (according to the order statistic), such that the
rates that are more likely to be sampled are given more weight when estimating this
probability.

We also require discrete versions of Equations 4.21- 4.23 that can be used with an
empirical ROC table. That is, when we have a ROC table from which we would like to

sample in order to create a new ROC table. These are given in Equations 4.31- 4.33:

/ 1
7.[0<r N n-m [S[r’-nj T d'pos[r/'”]] (4.28)
s 1
" = —POS[.n] (4.29)
/ 1
71-0>’ = [m ‘ng — S[run] + (1 — d) 'pOS[r/.n]] (4-30)

(1—#)-n-m
where d = ¥/ -n—|r' - n| is the relative distance of the rate between positions [ - n] and

|- n]. These probabilities could be retrieved from the rate-averaged consensus ROC
curve or from the ROC table.

For example, Table 4.4 shows an example ROC table with 2 sample rankings of
length 4 where my = 0.5. Imagine we are sampling this ROC table to generate a new
sample ranking, and we are currently generating the example at position k = 2. We
sample a rate ¥’ = 0.3 using the beta distribution with ot =k =2and B =n—k+1=3.
As there are four examples in each ranking, the examples reside at the rates %,%,% and
1. This means that the rate #/ = 0.3 is part way between the first and second examples,

and this distance is calculated asd = v -n—|r/ -n| = 0.3-4—]0.3-4| = 0.2. Therefore:

. I B
< 2ro1]=— 431
& 0.3-4-2[ "3 } 12 3D

(4.32)

7r0>r'=;[2-2—3+<1—1>-1]=2 (4.33)
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k 1 2 3 4
Samplel 0 O 1 1
Sample2 0 1 0 1
r 02505 0751
Sk 2 3 4 4
pOSk 2 1 1 0

Table 4.4: Example ROC table with two samples and 4 examples per sample.

Extension to generate a whole ROC table

The probabilities of each S; value computed in Theorem 4.1 correspond to only a single
row of the ROC table. We need the distribution across the number of positives up to
position k of all samples in the ROC table. We now use S ; to refer to the number of
examples from position one to k in one new sample row of a ROC table. We use S to
refer to the number of positives from position 1 to position k in the new sample, across

all rows in the ROC table. For each §; value we need:

n
p Skzsle'el...m:Z(l—yid):no (4.34)
j=1

Computing this exactly is computationally intractable, as for each possible s at a
position k the probability is given as the summation of the probabilities of all possible
combinations of values at position k that sum to this value. We instead approximate
the confidence intervals using the estimated variance of this distribution. The mean and

variance of the distribution of one sample up to position k are given by:

.ul,k:ZP(Sl,k:S S10=n0) -5 (4.35)
S

ot = 2. (Ste=5IS1a=no)(s— 1) (4.36)

where 1 denotes that these functions correspond to a single sample. We assume each
row is identically distributed such that the mean and variance of s at position k of the
ROC table are given by:
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m m

2 2 2

My = Z“hk =m-Wi (4.37) o) = 2 Oix=m-0j (4.38)
i=1 i=1

At each k we restrict to only the possible values of S, rescale these to between

zero and one, and use a scaled beta distribution to model this distribution and estimate

the confidence intervals. We calculate the mean and variance across S; values at each

position k, where the S; values have been rescaled to the range [0, 1]:

M — minSk
= 4.39
Hip maxSy — minSy, ( )
2
(07
Oep = ‘ (4.40)

(maxSy — minSy,)?

where maxSy, = m- maxS; y and minS; = m-minS ; and:

minSy x = max(0,ng —n+k) (4.41) maxS, y = min(k,ng) (4.42)

We use these to parameterise a beta distribution and infer a confidence interval, which

we then rescale to the original scale.

4.5.4 Bootstrap approach

We now introduce a rate-oriented point-wise confidence bounds approach using boot-
strapping. This is the bootstrapped equivalent of the parametric approach just described.
Bootstrap samples are generated using rate-sampling, and the upper and lower bounds
are set at each rate such that they contain 95% of the bootstrapped ROC curve samples.

We generate 2,000 bootstrapped ROC tables each with m samples. Each sample is
generated independently using the rate-first sampling approach, as follows.

The rates are sampled uniformly and sorted:
r1,r2...rnﬂ>r(l),r(z)...r(n) (4.43)

The probability distribution at each rate is found by:

1
To,r = — POS[1.] (4.44)
m
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We then use this probability to generate a label at k:

Iy ~ binom(m,,) (4.45)

In this way we generate a set of 2,000 bootstrap ROC tables (generating 2,000 - m sam-
ples in total).

This sampling procedure does not ensure that each sample has the correct class dis-
tribution. This is needed so that the confidence intervals generated from these samples
reflect that at rates 0 and 1 we are certain the curve passes through the points (0,0) and
(1,1) in ROC space, respectively. A simple approach to restrict to a fixed class dis-
tribution discards all samples where the class distribution is not correct. However, this
approach is only feasible when the number of examples is low, as otherwise samples are

rarely generated with the correct class distribution and this method becomes too slow.

We propose another approach that can be used with a larger number of examples,
where we adjust the rate and the number of true and false positives at each position in
order to correct the class distribution. We call this the rate-adjustment approach. The
rates of the bootstrap ROC tables are equally distributed along the ranking, as shown
in Figure 4.7. For each sample individually we adjust these rates and the true positive
values at each position, by scaling each position according to a correction factor, a
value for each sample and class that rescales the ‘width’ of each example in the ranking
to correct the class distribution. This adjustment is illustrated in Figure 4.7, and shows

how the effect is to stretch or narrow the examples along the ranking.

Rates: 1/6 2/6 3/6 4/6 5/6 1

|
Before: 0,0 ,0,1,0 1,
After: oo fo| 1 o 1

Figure 4.7: Illustration of rate adjustment to correct class distribution.

We use the bootstrapped ROC tables with the corrected true positive values, to es-
timate the confidence bound of the true ROC curve. For each ROC table, and at each
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position k along the ranking, we calculate the average recall across the samples:
1 m
tpry = —— i 4.46
Pre= . no ; ok (4:490)

Each position k in the ranking has a set of average recall values, one for each sam-
ple ROC table. This now corresponds to the probability density function we stated in
Equation 4.19. The proportion of bootstrap ROC tables with recall value between 7 pry
and 1 pr’ « gives an estimate of the probability that the recall at this position is between
these values, given this sample has a particular class distribution.

The confidence interval for position k is obtained from the mean recall values, 7 pry,
of the bootstrapped ROC tables as follows. For each position k we take the ¢ pr; value
of each ROC table, sort these values in ascending order, and select the 2.5% and 97.5%
percentiles as the lower and upper endpoints of the 95% confidence interval. This gives
a series of recall-rate pairs for the lower and upper limits of the confidence interval
at each position k. A confidence bound can be created by interpolating between these

points.

4.6 Experiments

The following experiments use a known ROC curve to generate samples for which we
create confidence bounds, specified by normally distributed score density functions with
mean 0 and 1 for the positive and negative class respectively, and a variance of 1. These
score distributions, and the corresponding ROC curve are shown in Figure 4.8. Our tests
use ROC tables with 10 samples and 50 examples per sample.

We evaluate whether the generated confidence intervals meet our aims, where at
significance level ¢ new samples generated from this consensus curve pass between the
lower and upper confidence limits at a given rate value, with probability 1 — . Given
a single sample ROC table and its confidence bounds, we generate 1,000 new sample
ROC tables from this sample. We count, at each rate, the number of consensus curves
(of these samples) the confidence interval contains. A true 95% confidence interval at a
given rate, should contain the consensus curve of new samples 95% of the time.

The results are shown in Figure 4.9. The results of the baseline parametric ap-
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Figure 4.8: Score probability densities for two classes (positive class: i = 0, 6% = 1;
negative class: £ = 1, 62 = 1), and corresponding ROC curve.

proaches (Figures 4.9a and 4.9b) are highly variable. The rate-oriented point-wise para-
metric approach (Figure 4.9¢c) reliably generates confidence bounds with close to 95%
confidence, except at the extremes. This indicates that the assumption that the number
of positives up to a particular position in the ranking is beta distributed is not valid at
the extremes (only).

The rate-oriented point-wise bootstrap approaches are also much more effective
compared to the baseline results (Figures 4.9d-4.9f). They are a little conservative,
particularly at the extremes of the distribution, due to the nature of bootstrap sampling,
where the variation between bootstraps may be too low to calculate strict confidence in-
tervals (for instance, where the lower and upper bounds of the 95% limits are the same
as those for the 94 or 96% limits). For example if a bootstrap sample contained only
one example then the values at the 95% bounds would also be the same values as for
the 0% or 100% limits. This also justifies the shape of the graph in Figure 4.9f. Here
the variance of the score distribution of the negative class is reduced to 0.2. This in-
creases the range of rates near to rate zero where the bounds are conservative because
for these rates the probability of a positive is near to one so there is little variation in
recall across the bootstrap samples. We also note that the rate-adjustment approach to
correcting the class distribution produces an interesting relationship between the rate
and the proportion of samples in bound, as shown in Figure 4.9¢, and this needs further

investigation.
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Figure 4.9: Mean (standard deviation) of the proportion of 1000 new samples (sampled
from ROC table) within confidence interval at each rate, across 100 tests.
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Figure 4.10: Example ROC curve and confidence bounds using rate-oriented confidence
bounds analytical approach. Each point on the upper and lower bound shows the upper
and lower point of the confidence interval at a particular rate. We show the confidence
intervals at a selection of rates shown for illustration. We have interpolated between
the points to show where the point-wise bounds are likely to sit at rates for which the
confidence intervals were not calculated.

Figure 4.10 shows an example ROC curve generated using our parametric approach.
The equivalent rate-recall curve is shown in Figure 4.11, with vertical confidence inter-

vals.

4.7 Related work

In Section 4.1 we discussed two parametric approaches to generating confidence bounds
— vertical (or horizontal) and threshold averaging. Here we discuss other proposed
approaches.

A non-parametric approach called fixed width bands [93,94] works by displacing

the whole ROC curve up and left, and down and right, to create an upper and lower
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Recall

Figure 4.11: Equivalent rate-recall curve [27] and confidence bounds for ROC curve
shown in Figure 4.10. Grey lines indicate bounds of rate-recall space.

confidence band respectively. The curve is displaced along the gradient —\/(no/nl)
(chosen as an approximation of the standard deviation ratios of the two classes). Rate
isometrics have a gradient —ng/n; such that if we changed the displacement gradient
to the gradient of the rate isometric this could be used as a rate-oriented approach.
However, the size of displacement is constant along the ROC curve which does not
constrain the confidence bounds to ROC space. Furthermore, this is an approach for
calculating the confidence around the whole curve, but in this work we are interested in

point-wise confidence bounds instead.

Tilbury et al. suggest a non-parametric approach, derived from first principles [95].
Their approach divides the whole ROC space into a grid and calculates the probabil-
ity that each cell contains the true ROC curve, given the sample curve that has been
provided. A confidence bound can then be inferred by enclosing all cells that have
a probability above a specified inclusion threshold. Another non-parametric approach

uses kernel methods to generate point-wise bounds [96].
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It is also interesting to mention methods that have been proposed specifically in
the medical field, to generate confidence bounds on ROC curves to evaluate diagnostic
tests [97]. As already mentioned in Section 3.4, diagnostic tests assess how well a
particular test is able to detect a disease. If the test outputs a binary value indicating
the prediction (disease / no disease), then the results of the diagnostic test give the
number of tests where participants were correctly identified with or without the disease,
or incorrectly identified with or without the disease. These are the numbers of true
positives, true negatives, false positives and false negatives respectively. Hence, each
diagnostic test (with a binary test value) infers a point on the ROC curve.

When several studies have performed the same diagnostic tests a meta-analysis may
be performed. This includes inferring the average (consensus) point on the ROC curve
and a confidence bound around this point, referred to as a meta-analysis in ROC space.
Two common methods to do this are the hierarchical summary ROC model and the bi-
variate random effects model [97]. These approaches are point-wise, used for binary
diagnostic tests that infer a single point in ROC space. As with standard meta-analyses,
a meta-analysis in ROC space also needs to take into account the precision of the es-
timates and the between study heterogeneity (differences in the estimates due to dif-
ferences in study design). For instance, a diagnostic test result with greater precision
should be given more weight in a meta-analysis compared to those with lower preci-
sion. Hence, while these approaches are point-wise like ours, they involve estimation

techniques specifically designed for the meta-analysis of diagnostic tests.

4.8 Summary

We have described a new approach to generate confidence bounds, which we call rate-
oriented point-wise confidence bounds. To our knowledge there is no approach in the
literature to infer rate-oriented confidence bounds. Macskassy el al. [98] claim that rate-
averaging makes the strong assumption that the rates are estimating the same point in
ROC space, and this is not appropriate. However, other approaches make similar as-
sumptions across a different metric, such as the false positive rate in vertical-averaging.

Our main aim was to address some important weaknesses of other existing methods.
Calculating the consensus and confidences bounds at each rate is practical as rate is

a measure over which we have control in practice. On the other hand, vertical (or
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horizontal) averaging fix the false positive rate (true positive rate) and average across
the true positive rate (false positive rate), but these metrics are not under our control so
are of little use in practice. Score-averaging creates confidence bounds around clouds
of points, and how best to do this is an open problem. Rate-averaging does not have this
problem because it constrains to a single dimension.

Our approach is also invariant to swapping the classes, and we suggest that this
property is sensible when generating confidence bounds. The confidence of a point on
the ROC curve should not depend on which class is labelled as positive. Furthermore,
our bounds have the advantage that they are smooth, due to the sampling across rates
we perform as part of our method.

Our secondary aim was to find appropriate bounds for assessing models used specif-
ically for rate-oriented tasks. Using a rate-oriented approach ensured that the perfor-
mance (and confidence interval) shown at a rate is an estimate for this particular rate.

We have analytically derived the probability distribution of the number of positives
up to each position in the ranking, and then used this to develop two methods, a para-
metric and a bootstrap approach. The parametric approach gave confidence bounds
having very close to the 95% confidence, except at the extremes. The bootstrap ap-
proach did generate satisfactory bounds at the extreme but also had greater variance
around the 95% confidence level. Therefore, we suggest that when the performance at
the extremes of the ROC curve are of little importance, the parametric approach should
be used, but where this is not the case the bootstrap approach can be used instead.

The ROC tables used as input to this confidence bounds method are composed of a
set of rankings, each generated by evaluating a model using an independent data sam-
ple. Ideally, assuming we are evaluating a learning algorithm, the data used to both train
and test a set of models should be independent. A set of m models are trained using m
independent training samples of size p, and tested using m independent test samples
of size g. The ROC table is then an m by g table containing the rankings of the test
samples. This would give a valid estimate of the performance of a learning algorithm
trained on a set of p independent samples and then tested on a set of ¢ independent test
samples. Typically, the amount of data available is limited, such that it is not possible
to use independent training sets, and in this case cross validation is often used. Cross
validation has independence of the test sets but the training sets share data and so are

not independent. When evaluating a learning algorithm, the confidence bounds esti-
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mated using cross validation may be conservative (i.e. narrower) because there is less
variation in the training data across the folds, than would occur if the training data were
independent. We may expect the variability in the models to decrease with increasing
number of folds, as this increases the overlap of the training data across folds.

In Chapter 3 we introduced the rate-weighted AUC (rAUC) [27], a general measure
where the distribution of weights along the ranking can be chosen for the specific task
at hand. We also described existing metrics that all evaluate rankings with respect to
the rate including; NDCG [82] in information retrieval, RIE [84], the BEDROC [85],
CROC [86] and SLR [87]. When assessing tasks that use these metrics in ROC space,
we suggest it is most appropriate to generate rate-averaged consensus curves with rate-
oriented point-wise confidence bounds.

In the next Chapter we present our analyses and results for assisting systematic re-
views using ranking and classification methods. We show the performance of models in
ROC space with rate-oriented point-wise confidence bounds and the associated smooth

consensus curves, and compare model performance using these bounds.



Chapter 5
Predicting risk of bias

In this chapter we present our methods and results for the three objectives introduced
in Chapter 2. These objectives are to: 1) identify relevant sentences within research
articles, 2) rank articles by risk of bias and 3) reduce the number of assessments the

reviewers need to perform by hand.

5.1 Statistical and machine learning methods

We use logistic regression to create sentence level and article level models. The sentence
level models predict whether each sentence contains relevant information for a risk of
bias property. The article level models predict the risk of bias value as described in the
text of an article. In line with the domain-based nature of a risk of bias assessment, we
implement this individually for each risk of bias property: sequence generation, alloca-
tion concealment and blinding. The dependent variable for a sentence level model is the
binary variable with values relevant or not-relevant, indicating whether a sentence con-
tains information relevant to a particular risk of bias property. The dependent variable
for an article level model is the binary variable with values low or not-low, describing
whether a particular property has a low risk of causing bias, as described by the contents
of the article. Each independent variable is the number of occurrences of a word in a
sentence or article respectively (known as a ‘bag of words’ representation with unigram
features).

Logistic regression provides predictions in terms of a score that denotes the proba-
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bility of each particular label. We use logistic regression as it has the following attrac-
tive features. Firstly, the parameters of logistic regression have a clear interpretation.
Given the logistic model y = 1/(1 + e51x1+ﬁ0), a one unit increase in the independent
variable x| corresponds to a f; change in the log odds of y. Secondly, logistic regres-
sion is known to produce scores that are well calibrated [99]. Scores are calibrated if,
for example, given a set of articles that all have a score of 0.8, we can expect 80% of
these articles to have a label of not-low (assuming a high score denotes more likely to
be not-low, as specified in Section 2.4.2). This means that we can use these scores as
probabilities that an article (or sentence) belongs to a particular class [99, 100].

We used the Weka machine learning package [101] to perform the following pre-
processing of the features, commonly performed in text mining tasks. We converted the
terms to lower case such that, for instance, the words ‘random’ and ‘Random’ corre-
spond to a single parameter in the model. We performed word stemming using Porter’s
algorithm [102]. This reduces words to the word stem, removing the variable endings
of words. For example, the words ‘blinded’ and ‘blinding’ are reduced to the same
stem, ‘blind’. This means that similar words are converted into a single parameter in
the model. The frequency of the word stem is the total frequency across all of its word
variants and this often improves the estimation of these model parameters.

We removed common words such as ‘the’ and ‘some’, known as stop words from
the set of features as these are unlikely to be predictive and vastly increase the number
of features. We use the standard stop word list in the Weka package. We removed words
that occur less than 5 times in the dataset and words of one or two characters in length.
All remaining words were included in the models.

We used the Weka machine learning package [101] to learn the logistic regres-
sion models with stochastic gradient descent (SGD), using the Weka SGD algorithm.
Stochastic gradient descent is an iterative algorithm where the parameters are updated
sequentially, in the direction that minimises the log loss of the logistic regression model.
Each iteration is called an epoch. There are two main parameters for the Weka SGD al-
gorithm, the learning rate and the number of epochs. The learning rate determines how
much the model parameters should change on each update, and the number of epochs
states the number of iterations to be performed. For instance if we use 100 epochs then
each parameter will be updated 100 times, once in each epoch. For the sentence level

learning we use a learning rate of 0.001 and 2000 epochs. For the article level learning
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we use a learning rate of 0.0001 and 4000 epochs. We reduce the learning rate and
increase the epochs for the article level learning because in general it is preferable to
do this where the running time remains feasible. The article level task has a smaller
number of examples with which to train each model and so this it is much faster to train
these models compared to the sentence level models. The Weka SGD method has an
additional parameter A, used for regularised logistic regression, and as we do not use

regularised logistic regression we set A = 0.

5.2 Methods and illustrative results

Our methods used to train and evaluate models depends on the specific objectives. We

now describe the methods and results for each objective in turn.

5.2.1 Objective 1: Identifying relevant sentences

As described in Section 2.2.2, this objective aims to rank sentences in order of rele-
vance, for each risk of bias property. Each sentence in our dataset is one of three types,
with respect to a particular risk of bias property: relevant, not-relevant or unlabelled.
Using this labelling there are two choices of dataset we can use to train the parameters
of the logistic regression model. The first dataset uses the sentences known to be rele-
vant as positive examples and not-relevant as negative examples, and does not include
unlabelled sentences. Here we are trying to train a model that can distinguish relevant
sentences from not-relevant sentences. We refer to this as the relevant/not labelling
approach. The second option is to use the relevant sentences as the positive examples,
and both the not-relevant and unlabelled sentences as the negative examples. Here we
would be trying to separate the relevant sentences from the rest. We refer to this as the
relevant/rest labelling approach.

Our aim is to separate relevant sentences from not-relevant sentences, but it is not
clear which dataset is preferable to train a model to do this. While the relevant/not
data clearly represents the relevant versus not-relevant notion more appropriately, the
relevant/rest dataset has the advantage of a much larger sample size (see Table 5.1). Pre-
vious work by Marshall et al. [23] used the relevant/rest labelling approach to separate

relevant from not-relevant sentences, which assumes (as they note) that the unlabelled
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sentences are all not-relevant, and this is unlikely to be the case. The relevant/not label-
ing approach assumes that the subset of examples labeled as relevant and not-relevant
are representative of the remaining sentences in the dataset, for which the labels are not
known.

We compare the use of the relevant/rest and relevant/not datasets for separating
relevant sentences from not-relevant sentences. To do this we perform 10-fold cross
validation with three different setups, where we train and test on the different labelling
approaches. Firstly, we train models with the relevant/rest dataset, and test these models
also with the relevant/rest dataset (test A). We then train models with the relevant/not
dataset and test these models also with the relevant/not dataset (test B). We compare
the results using these two datasets, to give an indication of the predictive ability of
each dataset. We also train models using relevant/rest sentences and test using the rele-
vant/not dataset (test C). This allows us to assess how well a model learnt with the rel-
evant/rest dataset can separate the relevant sentences from the not-relevant sentences,
even though the unlabelled data are included in the relevant/rest dataset. We com-
pare the evaluation on the relevant/not dataset, when estimating the parameters with
both the relevant/not (test A) and relevant/rest (test C), to determine which has higher
performance when trying to separate relevant sentences from not-relevant sentences.
Another possible test is to train models using relevant/not sentences and test using the
relevant/rest dataset, but since we are interested in the performance when separating

relevant sentences from not-relevant sentences this is not necessary.

Assessing performance for objective 1

Results of the comparisons of tests A, B and C are given in Table 5.1, the average
number of parameters in each model is given in Table 5.2, and the ROC curves of
the models generated in test B and test C are shown in Figure 5.1. The number of
features for test B is much lower than for tests A and C because this test does not use
the unlabelled sentences that constitute a large proportion of the sentences (as shown in
Table 5.2).

We focus on the comparison of tests B and C because these both evaluate the models
using the relevant/not and it is this labelling in which we are most interested. All results

indicate very good ranking performance, and this can be seen on the ROC curves as they
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seq-gen alloc-conc blind
unlabelled 243 477 129 155 148 934
Number of |, levant 14 989 59 390 24190
sentences relevant 1667 514 1156
A) relevant/rest 0.974 0.981 0.974
?ggn AUC (0.008) (0.009) (0.007)
B) relevant/not 0.987 0.986 0.991
(0.003) (0.011) (0.006)
C) train relevant/rest, 0.978 0.983 0.980
test relevant/not (0.008) (0.009) (0.007)
P-value AvsB! < 0.001 0.229 < 0.001
B vs C?2 0.005 0.462 0.001

Table 5.1: Results for sentence level: predicting the relevance of each sentence with
regards to a risk of bias property. ! P value using two-tailed unpaired t-test to compare
the AUC values across the 10 folds of cross validation (data are not matched), > P value
using two-tailed paired t-test to compare the AUC values across the 10 folds of cross
validation (data are matched).

pass near to the point (0,1) in ROC space. We evaluate the models using the area under
the ROC curve (AUC) metric, because for this objective we are concerned with how
well our models are able to rank sentences by relevance. We are concerned with ranking
rather than classification because we seek to provide an ordering to the reviewer such
that they can see the most relevant sentences in an article. For example, the ranks allow
sentences to be highlighted with different colours or shades in an electronic version of
the article. Table 5.1 gives the numbers of sentences that are relevant, not-relevant and
unlabelled, for each risk of bias property, and the results as the mean AUC across the
10 folds of cross validation. We compare the results of Test B and C using a two-tailed
paired t-test that compares the AUC evaluated on the models of the 10 folds. We use an
unpaired t-test to compare the results of Tests A and B because these tests evaluate the

models with different sets of sentences.

Training and evaluating models using the relevant/not data produces better perfor-
mance compared with training and testing models using the relevant/rest dataset, for
two of our three labels (tests A vs B in Table 5.1). This may be because the relevant/rest
data is noisier as it has some relevant sentences labelled as rest rather than relevant. This

can have two effects. Firstly, it is more difficult for the model to separate the relevant
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examples from the rest examples. Secondly, when evaluating the test data, the relevant
sentences that have been incorrectly labelled as rest would be evaluated incorrectly.
Comparing the performance between training using the relevant/rest dataset and train-
ing using the relevant/not dataset, while testing both using the relevant/not labelling, we
again found that the model trained with the relevant/not labelling method gave a better
performance for two of the three properties (test B compared with test C).

These tests have indicated that the relevant/not labelling should be used to learn
models to predict sentence relevance. These models gave very high ranking perfor-
mance, with mean AUC values across the 10 folds higher than 0.985 for all three prop-
erties. This can be interpreted as follows. Given a randomly selected relevant sentence,
and a randomly selected not-relevant sentence, the probability that the relevant sentence

would be ranked more highly than the not-relevant sentence is higher than 0.985.

Sentence models Article models
A B C All Title only Title and
abstract

seq-gen 14845.6 2372.2 14845.6 12176.7 98.9 1463.2

(26.49) (9.95) (26.49) (50.98) (4.25) (7.60)
alloc-conc | 12059.1 55394 12059.1 9907.6 60.1 1144.3

(30.31) (18.50) (30.31) (53.97) (2.47) (13.31)
blind 11408.7 3004.2 11408.7 9352.9 64.5 1090.8

(33.28) (9.09) (33.28) (26.84) (2.01) (8.16)

Table 5.2: Mean number of features (standard deviation) across cross validation folds.

5.2.2 Objective 2: Ranking articles by risk of bias

Objective 2 aims to rank articles by risk of bias, by training a logistic model to predict
the risk of bias value of each article. The scores output by the model are used to rank
articles by predicted risk of bias. As discussed in Chapter 3 this task is particularly
relevant for rapid reviews, where it is important the high quality studies are prioritised.

As well as using the full text article, we also test this objective using the title and

abstract from PubMed only. We generate models using: 1) the full text content of the

I'This method requires a constant number of examples of each label (low, not-low) in each fold, so we
add examples to make N constant, and use random selection of examples to correct these frequencies, for
instance by removing a randomly selected positive example and duplicating a randomly selected negative
example in a particular fold.



5.2. METHODS AND ILLUSTRATIVE RESULTS 113

TPR

0.6

0.5+

TPR

0.9

0.4F .

0.3} -

0.8]

0.2 -

0.1} e

FPR

(b) Allocation concealment

Figure 5.1: ROC consensus curves for sentence level learning comparing results us-
ing the relevant/not dataset (test B; blue dashed curve), compared with the train rele-
vant/rest, test relevant/not results (test C; green solid curve), for each risk of bias prop-
erty Generated with parametric rate-oriented method' [28], with associated point-wise
confidence bounds.
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research articles, 2) the article title from the PubMed database and 3) the article title
and abstract from the PubMed database. A comparison of these should help determine
whether the effort required to retrieve the full text is offset by the improvement in perfor-
mance when using it to predict risk of bias, in comparison to just using the text available
in the PubMed database.

We compare the average AUC across the 10 folds with random models, to assess
whether the ranking performance of the models is better than random. We do this using
permutation testing, where we take the true labels of the original cross validation test
folds, and randomly permute the order in each fold to give a random ranking with the
same number of positives and negatives. We calculate the average AUC of these 10 test
folds. This is repeated 1000 times and we give the proportion of times that an AUC
greater than that of our models is found with these random rankings.

We also evaluate the performance of ranking articles using a combined score of
sequence generation, allocation concealment and blinding. This is important because
when ranking articles, we would like to prioritise those with a low overall risk of bias.
We propose a general strategy where a weighted average is used to combine the indi-
vidual scores of the risk of bias properties. We illustrate this with equal weights, which

assumes that the three properties are equally important for predicting an articles risk of
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Figure 5.2: Hasse diagram of the partial ordering of property values when combining
into a single score. Overall risk of bias increases as the number of properties with a
value of not-low increases.

bias. The order of examples is then given by the partial order shown in Figure 5.2. This
partial order states that, for example, an article with two of the three properties having
value of low should be ranked more highly than an article with only one property with

a value of low.

Assessing performance for objective 2

We again use the AUC to evaluate the ranking performance of these models, given in
Table 5.3 as the average AUC across the 10 folds of cross validation. The mean (SD)
number of parameters across the 10 folds for each model is given in Table 5.2. The
ROC curves of the models generated using the full text and the title and abstract only are
shown in Figure 5.3. The models using the full text had mean AUC > 0.72. The models
using the PubMed title had mean AUC > 0.67. The models using the PubMed title and
abstract had mean AUC > 0.68. All models are better than random (all permutation
P values < 0.001). Models using the article content are able to rank articles better
than when using only the title, or title and abstract from the PubMed database, for the
sequence generation and allocation concealment properties only. We could not find a

difference between using the title and using the title and abstract, although this may be
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due to a lack of power because our sample size is small. It is interesting to note that the
title models are predictive even with a relatively small number of features (as detailed
in Table 5.2).

To evaluate the performance when ranking according to the combined score, we use
the 226 articles in our dataset that have labels for all properties (shown in Figure 2.5)
to test the models. This is necessary so that we can evaluate the predicted ranking
against the ranking using the known true labels of the articles, which is inferred from
the values of the three properties. We train a model for each property individually
using all examples with a label for this property, that were not included in the test set.
For instance, the dataset includes 991 articles for sequence generation and we use the
remaining 766 articles (after removing the 226 in the test set) to train the sequence
generation models. In order to estimate the uncertainty about the estimated ranking
performance, we randomly divide the test set into 3 partitions, and treat these as three
separate samples. If we were to generate a single model using the test set we would not
know how this ROC curve would vary across test sets with different examples.

We calculate the AUC of each test set using pairwise comparisons. In order to do this
we assign each example a class that denotes its level on the partial order. The classes are
denoted [y, [, 5,3 where [; corresponds to the examples with i low labels. For example,
an example with blind=Ilow, seq-gen=Ilow and alloc-conc=not-low has two low labels
and is assigned class /5.

The pairwise AUC value can then be calculated as follows. Given 6 examples with

ranking lp,11,13,11,ly,lo (ranked by increasing score), we start by comparing the first

Dataset ‘ seq-gen alloc-conc blind
AUC (standard deviation)

1.Article content 0.769 (0.051) 0.777 (0.034) 0.726 (0.051)
2.PubMed title 0.682 (0.053) 0.690 (0.072) 0.675 (0.063)
3.PubMed title and abstract | 0.692 (0.037) 0.685 (0.047) 0.694 (0.065)

P values': comparison of performance using feature sets 1, 2 and 3
1vs2 0.001 0.004 < 0.001
1vs3 < 0.001 0.002 0.206
2vs3 0.672 0.741 0.497

Table 5.3: Ranking performance using different datasets and P values comparing these
models using a paired two-tailed t-test. ! P values using two-tailed paired t-test to
compare the AUC values across the 10 folds of cross validation.
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Figure 5.3: ROC consensus curves for predicting article risk of bias. Generated with
analytical rate-oriented method [28], with associated point-wise bounds. Using logistic
regression. Blue dashed: Article contents (model 1); green solid: PubMed title and
abstract (model 3).
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example with class lp, with all other examples. This example is correctly ranked before
l1,11,1p, 1y but incorrectly ranked before /3, hence has four correct comparisons out of
five. The example at position 2 with class /; is then compared against all examples with
a lower ranking than itself, except the other example with the same class. This example
is correctly ranked before [y, [y but incorrectly ranked before /3, hence has two correct
comparisons out of three. This continues until the last example is reached. The pairwise
AUC is the proportion of these comparisons that are ranked in a correct order. In this

example AUC = i—;

AUC
multi-class all low versus rest
Test set 1 0.707 0.686
Test set 2 0.655 0.829
Test set 3 0.666 0.767
Mean (SD) 0.676 (0.027) 0.761 (0.072)

Table 5.4: AUC for combined ranking, for the three test sets. Multi-class AUC is the
pairwise AUC when treating each level of the partial order as a separate class. low
versus rest is the AUC of the ROC curve when using three low values (top level of
partial ordering) as the positive class, and all other labellings as the negative class.
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Figure 5.4: ROC consensus curve for low versus rest evaluation of combined ranking.
Three low values (top level of partial ordering) as the positive class, and all other la-
bellings as the negative class.

The results for the combined ranking are shown in Table 5.4. The three partitions
of the test set, when treating all partial order levels as separate classes, have mean
AUC =0.676 (SD = 0.027). Itis not possible to generate a ROC curve for the multi class
ranking because these graphs require binary classes. Figure 5.4 shows the ROC gener-
ated using the 1-versus-rest ROC curve generation approach, for the three yes labels (the
top of the partial order) versus all other label groups. Here the positive class corresponds
to examples with three yes labels and the negative class corresponds to examples with
less than three yes labels. The ranking has mean AUC = 0.761 (SD = 0.072) using this
evaluation approach. This is higher than the multi-class AUC (where each level of the
partial order is treated as a separate class), which indicates that distinguishing between
the very high quality articles (with all low labels) and those that are not is an easier task

compared with learning to distinguish between all levels of the partial order.
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5.2.3 Objective 3: Reducing the number of assessments the review-

ers need to perform by hand

Objective 3 aims to reduce the reviewer work load by identifying articles that can be
classified as low or not-low with high enough certainty, so that only a single reviewer
is needed to assess these articles by hand. We suggest that the certainty is high enough
when the model’s assignment is at least as likely to be correct as an assignment by a
human reviewer. When this is the case it may be reasonable to replace a human reviewer
by this model prediction. As already mentioned, the logistic regression model produces
a well calibrated score s for each article, such that s can be interpreted as the probability
that the article has a risk of bias value of not-low (because higher scores indicate an
example is more likely to be not-low). We can compare the scores assigned by a model
to two fixed probability thresholds # and 1 —¢, where ¢ is an estimate of the proportion
of human assignments that are correct. Articles are classified as not-low for a property
if s >t and as low if s < 1 —¢. This assumes that the human reviewer makes the same

proportion of mistakes with not-low and low articles respectively.

We apply the thresholds 7 and 1 —¢ to the logistic regression models that were gen-
erated for objective 2, to convert these ranking models into classifiers needed for this
objective. To determine the value of ¢+ we use results of previous work by Lensen et
al. [64] and Hartling et al. [61]. These works analysed the degree of concordance
of risk of bias assignments given by reviewers who have assessed the same studies.
Lensen et al. found disagreements (number of disagreement/number of comparisons) of
11/123, 26/123 and 41/123 for sequence generation, allocation concealment and blind-
ing, respectively. Hartling et al. [61] found disagreements of 8/28, 19/46 and 20/31 for
sequence generation, allocation concealment and blinding, respectively. We calculate
the average proportion of disagreements across these studies and properties to give an
estimate of the proportion of reviewer disagreements of 26.4%. For these articles we
know that one assignment is incorrect and the other is correct. For the other article
assignments where both reviewers agree we cannot know whether they are both cor-
rect or both incorrect. Hence the proportion of assignments that are definitely incorrect
(because the assignments disagree) is 13.2%. We use this proportion as a proxy for
the proportion of assignments that are incorrect, which would be the case if we assume

that if two reviewers agree then they are both correct. Therefore, a probability that is
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higher than 0.868 would be better than the certainty of a human reviewer, and we set
the threshold value t to 0.868.

The lower threshold, 1 —¢ = 0.132, denotes the score below which we are at least as
certain as a human reviewer that an article has an assignment of low, according to the
model prediction. The upper threshold, t = 0.868, denotes the score above which we
are at least as certain as a human reviewer that an article has an assignment of not-low,
according to the model prediction. A score between 0.132 and 0.868 indicates that the
model could not predict the label with as much certainty as a human reviewer, and these

articles should be assessed as usual by two reviewers.

Assessing performance for objective 3

Table 5.5 shows the number of articles our models classify as low or not-low using these
score thresholds. All models were able to classify more than 33% of articles as either
low or not-low with a certainty at least as high as a manual reviewer. We suggest that
only one human reviewer is needed to assess these articles manually. In the next section

we discuss and assess the model calibration.

Assessing calibration for objective 3

As described in Section 5.1, logistic regression is known to produce scores that are well-
calibrated. Objectives 1 and 2 involve ranking examples using the score and therefore
score calibration is not necessary. Instead we only care about the order of the scores
assigned to the examples. In contrast, objective 3 seeks to classify examples and we do
this using score thresholds that assume the scores are calibrated. For example, we take

our upper threshold to mean the lower bound of the probability that we are at least as

Predicting not-low Predicting low
score = 0.868 score < 0.132
% articles Precision % articles Precision Total %
seq-gen 16.9 (2.42) 0.821 (0.114) 20.9 (2.77)  0.838 (0.072) 38.2(3.14)
alloc-conc | 15.5(2.92)  0.874 (0.090) 9.9 (2.77) 0.816 (0.181) 35.5(4.45)
blind 7.6 (2.91) 0.803 (0.145) 14.8 (2.62)  0.810 (0.101) 33.4 (6.58)

Table 5.5: Mean number of articles (standard deviation) and precision (standard devia-
tion) across 10 folds (using sentence model).
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certain as a human reviewer that the risk of bias assignment is not-low. Therefore, for

this objective it is important to determine the quality of the calibration.

We assess this with reliability diagrams, shown in Figure 5.6. Reliability diagrams
are plots showing the score output by the model on the x-axis and the calibrated scores
on the y-axis. We used the CORElearn R package to perform isotonic calibration to
create reliability diagrams [99]. Isotonic calibration is a method of generating the cal-
ibrated scores using a ROC curve. This method has two steps. First, the ROC curve is
converted into a convex ROC curve, if this is not already the case. Second, the calibrated
score, which is simply the probability of a not-low example at a particular position of
a ROC curve, is calculated using the gradient (and class distribution) as we discussed
in Section 4.4. The first step is necessary because the scores must be decreasing along
the ranking (by definition), and if the calibrated scores (step 2) were calculated on a

non-convex ROC curve this would not be the case.

An example of isotonic regression is shown in Figure 5.5 and Table 5.6. The ROC
curve corresponds to three sets of examples each with a particular score. This curve is
concave because the second segment (with two positives and one negative) has a higher
proportion of positive examples compared to the first segment (with one positive and
one negative). The concavity is removed by combining the first and second segments of
the ROC curve to create a convex ROC curve, shown by the dashed line in Figure 5.5.
The calibrated scores are the empirical probabilities of a negative in each segment of

the convex ROC curve.

08 Labels [01] [ [001] | [011]

g o5 Model scores 07 |08 |09
o4 g Calibrated scores % %
0.3r
0.2r
0.1

00 012 0.‘4 0‘.6 018 i
FPR
Figure 5.5: Example of isotonic cali- Table 5.6: Example ranking.

bration.
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Figure 5.6: Left: Score distributions predicted by logistic regression models, green:
low; purple: not-low). Right: Assessing calibration with reliability diagrams [103]
(generated with isotonic regression).
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Convexifying the ROC curve creates a set of ‘bins’ containing examples that may
have different predicted scores but have been assigned the same calibrated score. Reli-
ability diagrams show each ‘bin’ as a horizontal line on the graph. If the scores output
by the model are calibrated then we could expect the plot to sit along the ascending di-
agonal. Visual assessment of the calibration maps shows that the bin lines do sit across
or close to the ascending diagonal. We do however notice a slight logistic shape, where
the bin lines close to (0,0) tend to sit above the ascending diagonal, whereas those near
to (1,1) tend to sit below the ascending diagonal. This indicates that the model scores

near to scores zero and one tend to be more extreme than the calibrated score.

5.2.4 Effect of changes in class distribution

The scores output by a model are only calibrated if the proportion of low and not-low
articles remains constant between the data used to train the model, and the new data
on which predictions are made. The reason can be shown with an example. Given a
set of 10 articles all with a calibrated score of 0.2. As a high score indicates that the
not-low label is more likely, this means the probability of not-low is 0.2. Hence, we
would expect that 8 examples have low risk of bias and 2 have not-low risk of bias.
Now imagine duplicating the low articles, such that we have 18 articles. As these are
duplicates the model would again output 0.2 for all 18 articles. However, now there are
16 low articles and 2 not-low articles, so the proportion of not-low articles is é and the
scores are no longer calibrated.

A simple adjustment to a score s will give a score s,,; that is calibrated according to

the new class distribution:

, s - scalaryeg

= 5.1
s scalaryeg + (1 —5) - scalarpog ©G-1)

where:

/ /

scalarpos = r (5.2) scalarpeg = ——— (5.3)
/4 l1—=x

where 7 is the proportion of positives in the data and the new data is denoted by ’.

For example, we can use this to adjust for the change of class distribution for s = %
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in the example above, where scalar,e, = %8 = 1% = g and scalarpys = % - l% = 1,70:
g s-scalarpeq
s -scalaryeg + (1 —s) - scalar g
2.5 | (5.4)
_ 109 _ 1
2 5 2\ 10
wot(l-w)9 9

This adjusted score corresponds to the correct probability after the change of class dis-
tribution. In practice however, this rescaling can be difficult because while the class
distribution used to train a model with supervised machine learning is known (because
we have labelled data), the class distribution of new data may not be known.

In objective 3 we use two score thresholds at s = 0.868 and s = 0.132. These denote
the probabilities above and below which we are at least as sure as a human reviewer
that the prediction made by our model is correct. These thresholds are fixed across all
class distributions. When the class distribution changes the adjustment of the calibrated
scores means that the examples falling below and above the thresholds may change. In
our case, new data has a lower proportion of low articles (with lower score on average)
and a higher proportions of not-low (with higher score on average) than the data on
which the models were trained. This means that when adapting the calibration of our
article models to new data we can expect less scores assigned below the lower thresh-
old (predicting low, at s = 0.132) and more scores assigned above the upper threshold

(predicting not-low, at s = 0.868).

5.2.5 Inference using rate-oriented point-wise confidence bounds

In Chapter 4 we introduced rate-oriented point-wise confidence bounds, and we can use
these in this setting to determine rates at which the classification performance of ROC
curves differ. Given two ROC consensus curves, R| and R; at a particular rate r, each
with a 95% confidence interval with lower bound Fy ,;(R;) and upper bound Fp ,.,,(R;).
This means that p (Foyr(Ri) > FO,rJ(Ri)) = 0.975 and p(Fy(Ri) < Foru(R;)) = 0.975,
such that:

P(For(R1) = Fori(R1) A For(Ry) < Foru(R2))

= p(FO,r(Rl) = FO,r,l(Rl)) 'p(FO,r(RZ) < FO,nu(RZ)) (55)
=0.975-0.975~0.95
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If the confidence intervals of Ry and R, at a rate r do not overlap and the expected
Fy,r (the consensus point) is greater for Ry than R, then we can say that with > 0.95
probability the consensus curve of R has higher classification performance when using
rate r as the classification threshold.

The ROC curves of our article level models (in Figure 5.3) show that the ROC curves
mostly have overlapping confidence intervals along the rate-oriented point-wise bounds.
Only the ROC curve of the sequence generation property (shown in Figure 5.3a) has
regions where the confidence intervals do not overlap, at around rates 0.25 and rate 0.7.
This indicates that with 95% probability, the consensus curve generated from the full
text has better classification performance compared with the consensus curve generated
from the title and abstract from the PubMed database, at these rates.

We note that in general point-wise confidence bounds have limitations when seek-
ing to detect differences in classification performance between models. This is because
each confidence interval denotes where a consensus curve, the average point across
folds, is likely to sit in ROC space. Hence we are comparing averages across folds
rather than comparing on a fold by fold basis. This is akin to the difference between
an unpaired and paired t-test — a paired t-test compares the performance of each fold
of test 1 with the same fold of test 2, whereas an unpaired t-test compares the perfor-
mance of all folds of test 1 with all folds of test 2. When confidence intervals of our
bounds overlap it could be the case that the performance of each fold is higher for test
1 compared with test 2, when comparing folds in a paired fashion. In this case a paired
t-test of classification performance (such as recall or accuracy) may be able to detect a
difference in performance, whereas this difference is not detectable when viewing con-
fidence bounds in ROC space. In short, the paired t-test has greater power. However,
rate-oriented bounds provide a visualisation in ROC space of the overall comparison of

models across all rates, and hence is a useful tool to compare models.

5.3 Analysis of predictors

Table 5.7 shows the top 20 predictors of the sentence models, having the highest coeffi-
cient values in the logistic regression models. We note that some word stems end with
an i because the stemming process includes changing a y suffix to i when the preceed-

ing character is not a vowel and is not the first character of the word. The coefficients
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denote the increase in log odds of not-relevant for a 1 standard deviation increase of the
number of times a word occurs in a sentence. We notice that all but one of our top pre-
dictors have a negative coefficient, where sentences containing these words (and more
of them) are more likely to be relevant for a risk of bias property. Positive coefficients
are not common because the occurrence of words are not predictive of not-relevant, it is
the absence of a set of words (those with negative coefficients) that predict this. For ex-
ample, the occurrence of the word stem randomli predicts that a sentence is relevant for
sequence generation. The absence of the randomli stem is predictive of a not-relevant
sentence.

As in conventional epidemiology, our predictors may be identified because they are
confounded with other words that are relevant to risk of bias, rather than being relevant
themselves. However, these are still valid predictors. For example, the studi word stem
predicts a sentence is relevant to the risk of bias due to sequence generation, but this
may be because often authors refer to a randomised study and hence studi may be a
predictor because of this association.

As expected, word stems related to the methods of generating random number se-
quences are predictive of sentence relevance for the sequence generation property, such
as computer-gener, randomli and stratifi. The more often one of these words occurs in
a sentence, the more likely the sentence is to be relevant to sequence generation. In-
terestingly, several of the top words for sequence generation are types of drugs. Drug
names may be good predictors because they may indicate whether the outcome is sub-
jective or objective, and the risk of bias due to blinding is affected by this. For instance,
vildagliptin, metformin and insulin are predictors or relevant sentences for sequence
generation, and these drugs are used to treat diabetes, which is assessed objectively
through blood tests.

The word stems randomli and randomis are indicators that a sentence is relevant to
the risk of bias due to allocation concealment. Allocation can only be concealed if the
assignment sequence is random, such that it cannot easily be predicted by the study per-
sonnel making the allocations. There are several words relating to the methods used to
ensure concealment of allocation, that are also predictors of sentence relevance for this
property. For example, using sealed envelopes, using a central location or a telephone
system to perform the allocation. Also, making sure the allocations are identical across

groups in a trial so personnel cannot identify the study group assigned.
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Sequence generation Allocation concealment Blinding
toothbrush -8.71 envelop -8.73 mask -8.07
computer-gener  -7.64 assign -7.28 capsul -791
randomli -7.56 randomis -6.84 unawar -7.58
studi -7.01 code -6.15 doubleblind -5.50
block -6.81 particip -5.79 indistinguish -5.23
comput -6.50 alloc -5.65 match -5.11
vildagliptin -6.48 central -5.39 blindli -4.86
assign -6.42 ident -5.38 awar -4.84
morphin -6.09 randomli -5.04 anaesthesiologist -4.71
patient -5.80 seal -4.68 assign -4.65
alloc -5.75 blind -4.64 doubl -4.51
subject -5.69 telephon -4.07 pain 4.17
insulin -4.99 independ -4.02 hernia -4.05
random-numb -4.80 packag -4.00 laparoscop -3.91
envelop -4.67 close -3.93 fluvoxamin -3.88
sonic -4.64 labetalol -3.86 24-week -3.60
number -4.64 hydralazin -3.66 incision -3.58
stratifi -4.51 bottl -3.61 label -3.57
group -4.39 involv -3.58 patient -3.52
metformin -4.28 sponsor -3.56 pharmaci -3.31

Table 5.7: Top 20 word stem predictors of sentence relevance and normalised coeffi-
cients (such that each coefficient denotes the increase in log odds of not-relevant for a
1 standard deviation increase of the number of times a word occurs in a sentence).

The top predictors of sentence relevance for the blinding property include, as ex-
pected, word stems variants of the word blind — doubleblind, blindli. Words that re-
late to whether the assignment is known are also important, such as unaware, aware,
masked, and indistinguishable. Unexpectedly, the word pain has a positive coefficient
for blinding, which is difficult to explain.

The predictors of risk of bias values of articles also contain many words that appear
sensible predictors, shown in Table 5.8. For example, computergenerated is a predictor
for low risk of bias due to sequence generation. Terms referring to the practice of
allocation concealment are predictors for low risk of bias due to this property. For
example identical, numbered, opaque, sealed, and envelopes. As expected, word stems
that would be used if blinding were performed are predictors for low risk of bias due to
blinding. Examples are blind, double-blind, and placebo.

Across all three risk of bias properties far more words that appear relevant are used
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Sequence generation Allocation concealment Blinding
631 -0.62 envelop -0.85 placebo -0.90
computergener  -0.61 opaqu -0.73 potassium 0.60
approv -0.60 grate -0.69 explan -0.52
WWW -0.60 power -0.64 acknowledg -0.48
opaqu -0.60 3depart 0.54 suppli -0.47
envelop -0.59 bulletin 0.52 blind -0.46
95% -0.57 jone -0.52 double-blind -0.42
alloc -0.55 seal -0.49 interf 0.41
inclus -0.50 mann—whitnei -0.46 broken -0.40
faster 0.50 committe -0.46 [4] 0.39
Spss -0.49 smoke 0.44 pharmaci -0.39
fund -0.49 januari 0.43 elsevi -0.38
otherwis -0.49 ident -0.43 182 0.37
discourag -0.48 england -0.42 undesir -0.36
mention 0.48 preclud 0.42 316 -0.36
conceal -0.48 epidemiologi -0.41 advantag 0.36
bmj -0.45 2002 -0.41 withdraw -0.35
655 0.45 remaind -0.40 55% 0.35
randomis -0.44 emerg -0.40 277 0.35
predomin -0.44 symposium 0.40 horm -0.34

Table 5.8: Top 20 word stem predictors of article risk of bias and normalised coefficient
(such that each coefficient denotes the increase in log odds of not-low risk of bias for a
1 standard deviation increase of the number of times a word occurs in the article).

in the sentence level models compared to the article level models. There are some terms
in the article level predictors for which the most likely explanation of their use as a
predictor is simply chance. For example, the terms 277 and [4]. This is consistent with
the level of performance we achieved and may be due to the number of examples we
have for this task (which is much smaller than for sentence learning) or the difficulty of
the learning tasks. We consider this further in the discussion section below.

It is common to use a regularised model with term frequency-inverse document
frequency (TF-IDF) feature transformations for text mining problems. Regularisation
is used to prevent overfitting, by constraining the size of the parameters in the model.
This is often beneficial when a dataset has a large number of features and a relatively
small number of examples, as is often the case for text mining tasks. TF-IDF is a feature
transformation that aims to better represent the importance of a word in the dataset.

It does this by offsetting the number of times a word appears in a document by the
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Sequence generation Allocation concealment Blinding
AUC P value | AUC P value | AUC P value
Sentence | 0.989 (0.003) 0.007 0.850 (0.014)  0.598 0.992 (0.005) 0.021
models
Article 0.789 (0.046)  0.012 0.796 (0.061)  0.020 0.744 (0.048) 0.010
models

Table 5.9: Results with regularisation and TF-IDF transformation. P value for a paired
two-tailed t-test comparing 10 folds of cross validation with original sentence level
results (test A in Table 5.1) and article level results (test 1 in Table 5.3), respectively.

proportion of documents within which the word occurs. We did not use regularisation
or TF-IDF, and it may be the case that these approaches help to reduce the occurance of
potentially irrelevant features in our top lists shown in Tables 5.7 and 5.8.

We rerun our sentence and articles models using regularisation and TF-IDF trans-
formations to determine if this improves the parameter estimation and hence the perfor-
mance of our models. We use the default regularisation parameters of the SGD Weka
class (11 regularisation with A = 0.0001). The results, given in Table 5.9, show that
using these settings does give a small improvement in the AUC, for 5 of the 6 results.
We provide the top 20 features of these models in Table A.1 and Table A.2, for the
sentence and article models, respectively. A number of the potentially irrelevant top
features are no longer in the top 20 features of each model. The sequence generation
top feature in the article model was ‘631’ and this no longer appears in the top features
listed. The following features are no longer top features in the blinding article model;
‘1417, “182°, 316°, 2777, ‘55%’. While regularisation and TF-IDF do improve model
predictions, the TF-IDF transformation means that the parameters of the model are no

longer interpretable.

5.4 The Systematic Review Assistant — a prototype

We have created a prototypical tool, available at http://www.datamining.org.uk, to demon-
strate how the objectives can be implemented in practice. This tool allows users to run
a prediction generator to make predictions for each article. Scores for each article and
each sentence are generated, predicting the risk of bias value and relevance, respec-

tively, for each uploaded article. The reviewer can then view the articles supplemented
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with the predictions, as shown in Figure 5.7. The sentences are highlighted by relevance
with respect to each risk of bias property. For example the sentence highlighted in red in
Figure 5.7 has been predicted as relevant for sequence generation (the colours are codes
as indicated by the buttons in the top right of the window). This sentence describes
assignment of participants to groups. A stronger highlighting colour (higher opacity)
indicates higher relevance. The articles are assigned scores denoting the risk of bias as
described in this thesis, for each risk of bias property.

We created the Systematic Review Assistant prototype using Java Servlets with a
MongoDB database. We chose MongoDB because it gives us a great deal of flexibility
during development of the prototype. This is because MongoDB is a noSQL database,
where there are no tables with a fixed schema (a pre-specified set of columns), as in an
SQL database. Instead, a MongoDB contains collections, and each collection contains
a set of documents. A collection is equivalent to an SQL table and a document is the
equivalent to a row in an SQL table. Unlike SQL tables, collections have no particular
structure, such that the fields of documents in a single collection may differ. This means
we can easily change a collection’s fields by changing the Java code that saves and

retrieves the data from the database, without the need to update the database directly.

5.5 Discussion

We have shown that we can rank sentences by predicted relevance (for each risk of
bias property) with high ranking performance (AUC > 0.98). This is useful to assist
reviewers by indicating which parts of the article text are particularly relevant to risk
of bias. We were able to rank articles according to risk of bias with AUC > 0.72.
Ranking articles by risk of bias means that the reviewer is able to assess the articles

from predicted low to predicted not-low risk of bias.
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We found a small decrease in performance when using only the article title and
abstract from PubMed, compared to using the full text extracted from the article PDF
document for sequence generation and allocation concealment (t-test P < 0.001 and
P =0.002 respectively). The full text content will often contain more information about
risk of bias compared to the title and abstract alone. However, this benefit may be offset
by noise from extraction of the article content from PDF documents and the volume of
content within articles that is irrelevant to risk of bias. Conversely, while the PubMed
abstract may not contain as much information about risk of bias compared to the full
text, it may have less noise because this text is a concise summary of the full text article
retrieved from the PubMed database. Retrieving PubMed data is quick and straight
forward, whereas obtaining the full text of research articles requires more effort and
text extractions from PDF documents are noisy. Hence, the increase in performance
from using the full text may not be worth the cost of its retrieval.

Our results indicate that it is possible to use text mining to reduce the reviewer work
load, by identifying the articles that have been classified with a certainty higher than that
of human reviewers. We suggest that these articles only need to be manually assessed
by one reviewer. On average more than 33 % of research articles can be labelled as low
or not-low with higher certainty than that of a human reviewer, offering the potential to
reduce the amount of time required by human reviewers.

The sentence level learning achieved much higher performance (in terms of AUC)
compared with the article level learning. This may be because the article level task
is more difficult. We can imagine that establishing the risk of bias values depends on
combinations of words and the interaction between them in the article text. For example,
the word envelope does not itself determine whether an article describes a study with low
risk of bias due to allocation concealment, as it is whether the envelopes are sequentially
numbered, and opaque that determines this. In contrast, if a sentence simply contains
the word envelope it is likely to be relevant to the allocation concealment property hence

learning sentence relevance is a simpler learning task.

5.5.1 Limitations

Our work has the following limitations. The RoBAL dataset was inferred from the risk

of bias assessments of a subset of Cochrane reviews (described in Section 2.3.1). This
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subset contains unequal numbers of reviews across topics, shown in Table 2.1 in terms
of Cochrane groups. Some groups (such as the Behavioural Medicines group or the
Complementary Medicine Field group) were not present in this review subset at all.
The performance of our models may differ across review topics. For instance, it may be
the case that our models perform better on articles about topics that were prevalent in
our dataset compared to those that were rare or not present. The Cochrane reviews from
which our dataset were derived were performed between 2008 and 2011. The extent
to which risk of bias is reported in articles describing clinical trials and the way it is
described may change with time. For instance, reviews performed in 2015 may include
articles describing clinical trials published after 2011, and this may mean the ROBAL

dataset on which our models were trained is not representative of these articles.

The limited size of our dataset (between 671 and 989 per risk of bias property)
may have restricted the performance of our models. We only included articles if the
title and abstract could be found in the text extracted from the PDF articles, such that
articles with poor text extractions are less likely to be included in our dataset because
noise within the text means that the title and abstract may not be found. Therefore, it
is likely that our dataset is less noisy than study articles on average. Furthermore, we
only include articles in our dataset where a quotation was supplied or no information
was stated, and so it is possible this sample is unrepresentative of articles describing
clinical trials. We use labels inferred from data from Cochrane risk of bias assessments
such that these labels may not be the same as directly annotated labels. Lastly, previous
work has indicated discordance between reviewers who assess the same article and this
indicates that the labels we have used, from the Cochrane risk of bias assessments, may

not always be correct.

An automated approach is limited by the degree of reporting in trial publications,
as although the CONSORT statement specifies that information relevant to risk of bias
should be described in a trial report, this is often not the case [48]. However, it is known
that trial protocols can contain information that is not reported in the study publications

[50], hence risk of bias information could potentially be extracted from these protocols.
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5.5.2 Comparison with related work

As mentioned in Chapter 2, to our knowledge only recent work from one research group
has investigated text mining for risk of bias assessments [21-23]. We now describe the

similarities and differences between their work and the work presented in this chapter.

Firstly, while the aims of our work are similar because we both make predictions
of article level risk of bias and sentence level relevance, there are also important differ-
ences. For the article level learning Marshall et al. aim to classify articles as low and
not-low. While we also train our article level models to predict this binary variable, we
propose two distinct aims for the article level learning which focus on assisting system-
atic reviews. These aims are 1) to rank articles by risk of bias and 2) to determine which
articles have been predicted with enough certainty by a model that only a single human
reviewer is needed rather than the standard two reviewers. These aims correspond to
a ranking task and a classification task using custom thresholds, respectively. For the
sentence level learning Marshall et al. aim to classify sentences as relevant and not-
relevant. While we also train our sentence models to predict this binary variable, our
aim is to achieve high ranking performance such that relevant sentences are ranked be-

fore not-relevant sentences, rather than to classify sentences as relevant or not-relevant.

The larger dataset allows Marshall et al. to investigate the use of more complex mod-
els. While we learn to predict the risk of bias of each domain individually, Marshall et
al. learn these together with a multi-task learning approach. Furthermore, they investi-
gate the use of sentence predictions to improve the article level predictions by adding
extra parameters to the article model that describes which words are contained in rel-
evant sentences. In contrast, we learn models for the sentence level and article level

independently. A similarity of our modelling approaches is the use of linear models.

Marshall et al. evaluate their models as classifiers (using metrics such as accuracy),
whereas we evaluate our models using metrics that are appropriate for each of our three
objectives, including the AUC to evaluate ranking performance for objectives 1 and
2. Our work includes an experimental comparison of performance using the full text
compared with using only the title and abstract from the PubMed database, whereas
Marshall et al. only assess performance using the full text. It is difficult to compare
empirical results because we use different evaluation approaches. However, conclusions

of both works are positive regarding the potential for using text mining approaches for
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risk of bias assessments.



Part 11

Assisting hypothesis selection

137






Chapter 6
Background

In this part of the thesis we present a novel method that uses a hypothesis-searching ap-
proach to screen for causal associations in a potentially large hypothesis space. The ap-
proach has been submitted for publication [26]. In this chapter we provide an overview
of current approaches that search for hypotheses in epidemiology, discuss the issues of
causality and confounding in observational epidemiology and provide an overview of

an approach called Mendelian randomisation that can help elucidate causal effects.

6.1 Hypothesis-free approach to hypothesis selection

As mentioned in Chapter 1, epidemiology is typically hypothesis-driven, using prior
knowledge to specify a hypothesis to be tested. However this can bias epidemiological
research to hypotheses where there is a prior belief that an association exists. Also, the
analyst’s research interests and preconceptions about the composition of causal path-
ways may affect the hypotheses they decide to test. This means that some ‘popular’
hypotheses may be tested many times by different research teams, while others may
never be tested.

An alternative approach is to use hypothesis-free methods to identify hypotheses to
test further. This approach is valuable where no strong prior knowledge exists to indi-
cate which hypotheses should be investigated. Instead of a researcher deciding which
hypothesis to test, this is done systematically using an automated process to search a po-

tentially large number of hypotheses. The set of hypotheses that are tested is known as
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the hypothesis space [104]. For instance in a genome-wide association study (discussed
in Section 6.2.1) the hypothesis space is the set of linear associations of a particular
trait such as BMI, with all (typed) genetic loci. The hypothesis-free approach tests all
hypotheses in the hypothesis space in order to select those to be followed up with a
hypothesis-driven analysis on a different dataset. The prior knowledge used to choose

hypotheses for hypothesis-driven analyses is generated by this data analysis.

6.2 Current hypothesis-free approaches

Hypothesis-free approaches are being increasingly used to find associations in individ-
ual level data. Here we discuss three such methods: the genome-wide association study
(GWAS), the environment-wide association study (EWAS) and the phenome-wide as-
sociation study (pheWAS).

6.2.1 The genome-wide association study (GWAS)

Candidate gene studies test the association of a specific region in the genome with a phe-
notypic trait. Prior knowledge is used to suggest the candidate locations in the genome
that may be causally associated with a trait. The researcher then tests this location to
determine if the trait is associated with genetic variation at this location.

Historically, the results of candidate gene studies have been shown to be largely
non-replicable [24,25]. There are several factors contributing to this. First, there is
a large number of genetic variants that could potentially become a candidate for any
particular phenotypic outcome but only a relatively small number of these may actually
have an effect on the outcome. This means that unless the priors used to choose a
hypothesis are strong far more often than not a study will test an association that is null.
This means that over all candidate gene studies the type 1 error rate — the proportion
of ‘null’ associations incorrectly found to be ‘significant’ — is high. Second, typically
these studies use inadequate significance thresholds (to determine if an effect has been
found) and small sample sizes, which further increase the type 1 error rate [105, 106].
Finally, all these issues are further compounded by publication bias, where ‘significant’

results are published whereas those identified as ‘null’ remain unpublished.
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Hypothetically we can imagine 500,000 genetic variants are tested separately in dif-
ferent candidate gene studies, of which 100 affect a particular trait. We would expect
that an o = 0.05 threshold would identify around 499,900 x 0.05 = 24,995 associations
incorrectly. The number of true associations identified would depend on the test power.
In the best case all 100 true associations would be identified, and the proportion of re-
sults identified as an association (according to significance testing) that actually are false
associations, called the false discovery rate (FDR) is approximately 100%?% = 0.996.
Assuming only positive results are published, due to publication bias, this is then the
proportion of published associations that are false. If we have a better prior about the
hypotheses likely to be true then the FDR could be reduced because the relative propor-

tion of true associations of those tested would increase.

The genome-wide association study (GWAS) approach has provided an effective
screening step, used to identify genetic markers to then follow up with candidate gene
studies. The GWAS approach tests all typed markers (typically around 500,000) for
an association with a phenotype. This approach uses a Bonferroni adjusted threshold,
where the threshold P value used to determine if an identified association is likely to be
real is adjusted to account for the number of tests performed. The Bonferrroni adjusted
threshold 7, is given by 7, = % where ¢ is the original threshold and »n is the number
of tests performed. Commonly, t = 0.05 such that the Bonferroni adjusted threshold
1Sty = %. The Bonferroni adjusted threshold of GWAS is typically set as 5 x 1078,
to account for the approximate number of tests performed in a single GWAS study
(which assumes 1 million SNPs such that % = 5x 1078). GWAS studies therefore
require large enough samples to give sufﬁéient power to detect associations using this
threshold [107]. GWAS give more replicable results for two reasons [105, 108]. Firstly,
the more stringent significance threshold means that ‘significant’ associations are less
likely to be false associations. Secondly, when GWAS are published in the literature
they show not only these ‘significant’ associations, but also the tests performed that did
not show an association. This means that GWAS are not affected by publication bias
because null results are also published.

While the stringent threshold means that ‘significant’ associations are less likely to
be false associations, this also means that true associations that do not meet significance
using this threshold are missed. To date, the genetic variation known to affect a par-

ticular trait explains only a small proportion of the estimated variation attributable to
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genetics. This has been referred to as the missing heritability, and is likely to be in
part due to the stringent threshold used for GWAS ! [109]. For example, the largest
GWAS to date for body mass index identified 97 loci meeting genome wide signifi-
cance (P < 5 x 10~%) [110]. These loci account for ~ 2.7% of variation in BMI. BMI is
affected by both genetic variation and environmental factors, and it has been estimated
that genetic variation accounts for 40 - 70% of the variance of BMI [111, 112], much
higher than the variation explained by the identified loci.

6.2.2 Environment-wide association study (EWAS)

Hypothesis-searching has been applied to the task of identifying associations between
phenotypic variables, using the environment-wide association study (EWAS) approach
[113-115]. For instance, one study [114] tested the association of a collection of envi-
ronmental factors with lipid levels.

EWAS search for associations between observational variables (excluding genetic
and epigenetic variables), and this is a major limitation of this study design. Whilst
observational associations are useful for establishing risk factors to determine who in a
population is at risk of developing a disease, this type of association does not provide
evidence of causal effect between two traits. The observational estimates may be biased
estimates of causal effects due to confounding. We discuss the issues of causal infer-
ence and confounding between phenotypes in Section 6.3. The EWAS design can be
improved by using an approach called Mendelian randomisation to identify associations

that are likely to be causal.

6.2.3 Phenome-wide association study (PheWAS)

The phenome-wide association study (pheWAS) approach tests the association of a po-
tentially large number of phenotypes with a small set of genetic variants [116]. This is
similar to the GWAS approach which also tests associations between genetic variants
and phenotypes. The difference is that pheWAS focus on a small number of genetic

variants and a large number of phenotypes, whereas the opposite is true for GWAS.

Other sources of genetic variation other than allele dosages may also contribute to the missing heri-
tability such as epigenetic variation and interactions between genetic variants.
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Initially the pheWAS approach was used with electronic health record (EHR) data.
An early example used the International Classification of Disease (ICD) codes to con-
struct a dataset of phenotypes [117]. They tested the association of these phenotypes
with 5 SNPs that had previously been associated with a set of diseases including multi-
ple sclerosis and rheumatoid arthritis. Their analysis replicated several known associa-

tions between SNPs and diseases, and also identified other novel associations.

PheWAS has also been performed using cohort studies, and this tends to be less re-
strictive compared with the use of EHR data because these studies often have a more
diverse range of phenotypes. One recent study sought to identify pleiotropy, where a ge-
netic variant is associated with more than one phenotype. They tested the association of
80 SNPs with 1,008 phenotypes, using the National Health and Nutrition Examinations
Surveys (NHANES) dataset [118]. This dataset includes three different surveys with
participants of 3 different ethnicities. Hence the analysis could be performed separately

within these partitions, and associations identified only when replication was achieved.

While the PheWAS approach can help to identify phenotypes associated with the
same genetic variant, the results can tell us little about the relationship between these
phenotypes. An association between a genetic variant and two phenotypes may occur
because: 1) the genetic variant affects one phenotype that then affects the other pheno-
type, 2) the genetic variant independently affects both phenotypes, or 3) the phenotypes
are correlated. The first and second mechanisms are known as vertical and horizontal
pleiotropy and are explained further in Section 6.4. The third mechanism is due to the
close relationship between many traits such that correlations exist between them. For
instance, there are multiple traits related to bone content such as bone mineral density

and bone mineral content, and these are highly related.

We may be particularly interested in the first mechanism, to determine whether there
is a causal association between two phenotypes. In Chapter 7 we introduce a novel ap-
proach that extends pheWAS in order to investigate the causal relationship between
phenotypes. We do this using an approach called Mendelian randomisation, to over-
come the issues of causality and confounding present in observational studies. First we

provide an overview of these issues and the Mendelian randomisation approach.
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6.3 Causality and confounding in observational epidemi-

ology

Observational phenotypes in epidemiology are highly correlated. One study performed
pairwise correlations across a set of phenotypic variables and found that 54% were cor-
related at a @ = 0.05 significance level, compared to 5% expected by chance alone [30].
This is problematic because an association between an exposure and an outcome may
be because they are both associated with a third trait, a confounding factor. Figure 6.1
shows an example of confounding, where an association between drinking alcohol and
lung cancer may be found because both alcohol and lung cancer are associated with
smoking. Smoking confounds the association between alcohol and lung cancer — the

association is real but neither causes the other.
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Figure 6.1: Example of confounding.

If all confounders are known and they are perfectly measured then it is possible to
determine if there is an association between an exposure and outcome that is not due
to confounding. Commonly this is done by adjusting for the confounding factors in the
model. For instance, when testing the linear association of exposure E with outcome O
we may use two models: O = BgE + By and O = BgE + BcC + By, where C is a con-
founder of the association. If the association between exposure and outcome, given by
the coefficient B attenuates to the null when C is included in the model, then it is likely
that the association is due to confounding. However, in practice it is not possible to
know whether a model accounts sufficiently for confounding factors. The confounding
factors may not be known, and if they are known then they may not be measured in a
particular cohort. Furthermore, measurement error in observed confounders may cause

residual confounding [30, 119].
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6.4 Inferring causality with Mendelian randomisation

Observational analyses can infer associations between two traits, but cannot infer a
causal relationship between an exposure and an outcome. A randomised controlled trial
(RCT) on the other hand, can provide evidence of causality. In this study design par-
ticipants are randomly assigned to intervention or placebo groups so that the treatment
they are given (or placebo) is not associated with confounding factors. Any association
between intervention received and outcome is then known to be due to an effect of the
intervention on the outcome. An RCT however is not always feasible, as it may not be
ethical to give (or withhold) a particular intervention, they are typically expensive, and

they often needs to run for years to see an effect on the outcome.

Mendelian randomisation can help researchers infer causation by using an instru-
mental variable (IV) constructed from genetic variants [120, 121]. Instead of testing an
association using an observed exposure we can use variation in the genome that is asso-
ciated with the exposure. The genome, having been created at conception, precedes the
outcome such that the direction of causality of any association is from genetic exposure
to outcome. Furthermore, following from the two (approximate) laws of Mendelian ge-
netics, confounding is in principle avoided. Mendel’s first law (the Law of Segregation)
states that the probability that any particular allele is passed from parent to offspring is
independent of environment, such that genetic variants are not normally associated with
factors that often confound associations between observed traits. Mendel’s second law
(the Law of Independent Assortment) suggests that the genetic variants are inherited
independently of each other, such that an association between a genetic variant and a
trait cannot (in principle) be due to an association with another genetic variant that con-
founds the association. We note however, that after Mendel proposed these laws it was
found that the second law was not always true because genetic confounding can occur,

and we discuss this in more detail below.

Mendelian randomisation is similar in principle to the randomisation approach of
RCTs. As already discussed, the RCT study design randomly assigns participants to
study groups so that the intervention they receive (the exposure) is not associated with
confounding factors. Similarly, according to Mendel’s second law each locus on the
genome is (in principle) inherited independently to all other loci, such that they are

effectively randomised with respect to each other [122].
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In order for a genetic variant to be a valid instrument for an exposure, three instru-
mental variable assumptions need to hold [122]. Firstly, the IV should be associated
with the exposure. Secondly, the IV should not be associated with factors that con-
found the association between the exposure and the outcome. Thirdly, the IV should
be independent of the outcome, given the exposure and confounding factors. These as-
sumptions are illustrated in Figure 6.2. Assumption 3 holds because there is no path

between the genetic variants and the outcome that is not also through the exposure.
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Figure 6.2: Instrumental variable assumptions. Solid arrows depict relationship we are
testing. Dashed arrows depict confounding.

The third assumption may be violated by genetic confounding through population
stratification, linkage disequilibrium and horizontal pleiotropy. These are illustrated in
Figures 6.3a-c, and are each different ways in which alternative paths are generated
from IV to outcome that do not pass through the exposure. Population stratification
occurs when subsets of the population have a different genotype, and the outcome also
varies according to these population subsets. This creates an association between the
IV and the outcome. Population stratification is often caused by ethnic differences and
this can be seen if associations between an exposure and outcome are not present when
analysing within ethnic groups [123].

Linkage disequilibrium refers to the association between nearby genetic variants
on the genome. This occurs because, contrary to Mendel’s second law, alleles on the
genome are not passed on independently. In particular, nearby regions on the genome
are more likely to be inherited together. This can create an alternative pathway from
genetic IV to the outcome if the genetic variant with which the IV is also associated,
is associated with the outcome (not through the exposure). Correlation between ge-
netic variants is less common than correlation between observed phenotypes [30] such
that confounding through linkage disequilibrium is far less likely than confounding in
observational epidemiology.

Pleiotropy refers to the effect of a genetic variant on multiple phenotypes, and, as al-
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ready mentioned, there are two types — horizontal and vertical pleiotropy [124]. Vertical
pleiotropy occurs when a genetic variant affects a trait and this in turn has an effect on
another trait. This type of pleiotropy is the essence of the aims of Mendelian randomi-
sation, to determine if one trait affects another as depicted in Figure 6.2. Horizontal
pleiotropy occurs when a genetic variant affects multiple traits on different pathways.
This is problematic if a genetic variant affects the exposure, but also a second trait that
also affects the outcome, as shown in Figure 6.3c. This alternate pathway does not pass
through the exposure and this invalidates the IV assumptions. In the rest of this part
of the thesis, when we refer to the issue of pleiotropy we are referring specifically to
horizontal pleiotropy.

The occurrence of these confounding sources — population stratification, linkage
disequilibrium and horizontal pleiotropy — cannot be directly tested for. However, there
are approaches that are able to examine whether they are likely to exist and affect results

to any meaningful extent, such as those we describe in Section 7.2.3.
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Figure 6.3: Types of confounding in Mendelian randomisation analyses. Solid arrows
depict relationship we are testing. Dashed arrows depict confounding.

A robust approach to Mendelian randomisation is to estimate the association of ge-
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netic variants directly with the outcome. This can be done with a simple linear regres-
sion model of the outcome on the genetic variants. This provides a valid test of whether
an exposure causes an outcome and only depends on the three core instrumental vari-
able assumptions described above [125]. In order to estimate the size of the effect of
an exposure on an outcome, the exposure phenotype must also be used in the analysis
(or have been used in a subsequent analysis as is the case of two sample Mendelian
randomisation [121]). For instance, a two stage least squares analysis first estimates the
effect of the genetic IV on the exposure, and then estimates the effect of the exposure
on the outcome using the predicted exposure values from the first stage.

When the exposure is used in the analysis the instrumental variable assumptions
may be invalidated in other ways. For example, if the instrument affects the outcome
through the exposure phenotype at other time points than those included in the analy-
sis then this invalidates the third instrumental variable assumption, because this means
there is a path from the instrument to the outcome that does not pass through the ex-
posure. For instance, if body mass index (BMI) at age 2 and at age 25 both affected
coronary heart disease the published allele score for BMI cannot identify the indepen-
dent effects of BMI at these time points [126]. Furthermore, researchers must impose
stronger assumptions to estimate the size of the effect of the exposure on the outcome,
referred to as point identifying assumptions. For example, epidemiologists have com-
monly assumed constant treatment effects or no effect modification for continuous out-
comes, or no effect modification for binary outcomes [127]. Researchers can investigate
the validity of the point identifying and core instrumental variable assumptions if mul-
tiple genetic variants are associated with the exposure. If two or more variants affect an
exposure through different causal pathways, and the core instrumental variable assump-
tions and either of the point identifying assumptions hold, the variants should estimate

the same size of causal effect of the exposure on the outcome [122].

6.5 Summary

In this chapter we have discussed current hypothesis-searching approaches in epidemi-
ology. We have given an overview of the issues of causality and confounding in ob-
servational epidemiology and discussed how Mendelian randomisation can help to de-

termine the causal effect between two traits. In the next chapter we introduce a new
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approach that searches for causal associations in a potentially large set of hypotheses,

using Mendelian randomisation. We demonstrate this approach by searching for the

causal effects of BMI.



150 CHAPTER 6. BACKGROUND



Chapter 7

Methods

In this section we illustrate how Mendelian randomisation can be used to investigate
the effects of an exposure with a large set of outcomes, to identify outcomes potentially
causally influenced by an exposure. As with GWAS, this is a screening approach where
identified associations need to be validated through replication studies. We illustrate

this method with an example application — searching for the causal effects of BMI.

7.1 PheWAS with causal inference: a new approach to

identify potentially causal hypotheses

We present a general framework to search for causal associations of a exposure with a
potentially large number of outcomes, using Mendelian randomisation. While Mendelian
randomisation is becoming increasing used to test for causal effects, to date (to our
knowledge) there have been no hypothesis-free analyses using this method. Figure 7.1

shows an outline of our approach. We use a two-stage approach to identify potentially
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Figure 7.1: Pipeline of the Mendelian randomisation hypothesis generation approach.
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causal relationships, and then follow this with investigations into the validity of the IV
assumptions. The first stage uses linear regression to test the association between a
genetic IV and the outcomes directly. This identifies a set of outcomes that may be
causally affected by the exposure, but does not estimate the effect of the exposure on
the outcomes. We use an arbitrary threshold of P < 0.05 to select outcomes to take
forward to the second stage. The second stage estimates the effect of the exposure on
the outcome. Finally, we investigate the validity of the IV assumptions, to assess the

reliability of our estimates calculated in the second stage analysis.

This approach is scalable because the number of tests grows linearly in the number
of outcomes. Given a single outcome N tests are performed, if this is increased to 100

then 100 x N tests would be performed.

Whilst we give a general framework here, the specific methods may vary between
studies. These details include how the instrumental variable is constructed. The IV may
simply be the allele dose of a single SNP (the count of a particular allele at this locus),
or it may be a score calculated as the sum of the allele doses of a set of SNPs known
to be associated with the exposure. Furthermore, it is also possible to include weights
to create a weighted score that is the sum of the allele dosages, weighted by the size of
the effect of each SNP on the exposure. This is only possible when the effect sizes have
been calculated in a different study to the one used for the Mendelian randomisation
analysis, as otherwise the score may overfit to this data. In our example application
the IV is a weighted-score using the 32 SNPs known to be associated with BMI (our

exposure), and more details of this are given in Section 7.2.2.

The number and strength of SNPs known to be associated with the exposure also
determines the degree to which the IV assumptions can be assessed, the last step in our
pipeline. In the following analysis we use tests that make comparisons across SNPs or
subsets of SNPs (see Section 7.2.3). Therefore it is clear that this is only possible where
multiple SNPs are available. Furthermore, there may be insufficient levels of power

when using SNPs or a set of SNPs individually, such that these tests will lack power.

We now apply this general pipeline to a specific example — identifying the causal
effects of BMI.
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7.2 Example application: searching for the causal ef-
fects of BMI

BMI has a close relationship with many traits and is associated with diseases such as
type 2 diabetes [128] and cardiovascular disease [129]. An association between BMI
and a phenotype may be due to confounding or because the phenotype affects BMI,
rather than because BMI affects the phenotype. For instance, clinical trials have shown
BMI is affected by behavioural factors such as diet and exercise [130, 131]. We build
upon previous Mendelian randomisation studies that have investigated the causal effects
of BMI on inflammation, cancer, age at menarche, diabetes, atherosclerosis risk and
blood pressure and hypertension [132—140] and bi-directional studies that have analysed
the effects of BMI and a second exposure such as C-reactive protein [136, 141], serum
uric acid [142, 143], vitamin-D [144] and fetuin-A [145].

In this section we describe the methods used for this analysis. Figure 7.2 shows
the generic pipeline (Figure 7.1) with annotations detailing the specific methods of this

analysis.

7.2.1 Study population

The Avon Longitudinal Study of Parents and Children (ALSPAC) is a prospectively
collected pregnancy cohort that recruited pregnant women with expected delivery dates
between April 1991 and December 1992 from Bristol, UK (see [146—148] for the study

Weighted allele score

Create instrumental

variable (IV)
Stage 1 tests: Stage 2 tests: . -
direct associations of IV IV analysis of top results el Val'd.ny iy
assumptions
and outcomes from stage 1

Create outcome dataset | |

| Two stage least squares

. IV comparison tests
analysis

Over-identification tests

Figure 7.2: Specific pipeline for our example: finding the causal effects of BMI.
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details). Ethical approval was obtained from the ALSPAC Law and Ethics Committee

and local research ethics committees.

A total of 9,912 ALSPAC children were previously genotyped using the Illumina
HumanHap550 quad genome-wide single nucleotide polymorphism (SNP) genotyping
platform by the Wellcome Trust Sanger Institute, Cambridge, UK and the Laboratory
Corporation of America, Burlington, NC, USA. We now describe the quality control
steps previously performed on this genotypic data. Individuals were excluded from
further analysis on the basis of five criteria that each indicate quality of the data. Firstly,
individuals with incorrect sex assignments when comparing the recorded sex to that
found by genotyping. Secondly, individuals with a very low or very high proportion of
heterozygous gene loci, where the two alleles of a locus are different (using thresholds
of < 0.320 and > 0.345 for the Sanger data and < 0.310 and > 0.330 for the LabCorp
data). Thirdly, individuals with a disproportionate level of missingness (> 3% of SNPS)
because this indicates that the SNPs may be incorrectly typed.

Fourthly, individuals having similarity on the genome that indicate individuals may
be related (have a shared common ancestor) even though they may be unaware of this.
This is called cryptic relatedness and is determined using a measure of genetic related-
ness between individuals that indicates the likelihood that these individuals are related,
called identity by descent (IBD). Individuals with IBD > 10% are removed from the
dataset. It is important that individuals in the study are not related to each other as this
may bias the result such that it is not representative of the population as a whole [149].
Lastly, individuals of non-European ancestry! were removed in order to restrict our
analysis to individuals of white European ethnic origin to reduce the potential for pop-
ulation stratification, which could confound associations between the BMI allele score
and the outcomes. The resulting data set consisted of 8,365 individuals and 488,311
autosomal SNPs.

Three criteria were used to assess SNPs for quality control. Firstly, SNPs with
a minor allele frequency of < 1% were removed because this reduces the power to
detect associations such that false positive associations are more likely. Secondly, SNPs

with a call rate of < 95% were removed, because if values cannot be inferred for a

'Non-European ancestry was detected by a multidimensional scaling analysis seeded with HapMap 2
individuals, EIGENSTRAT analysis revealed no additional obvious population stratification and genome-
wide analyses with other phenotypes indicate a low lambda
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large proportion of the sample for a particular SNP then this indicates the typing of this
SNP may be difficult and hence have poor quality. Lastly, only SNPs which passed an
exact test of Hardy-Weinberg equilibrium (P > 5 x 10”) were considered for analysis,
because deviations from HWE indicate there may have been errors in the genotyping
process [149].

The autosomal variants were imputed with MACH 1.0.16 Markov Chain Haplotyp-
ing software, using CEPH individuals from phase 2 of the HapMap project (HG18) as
a reference set (release 22). After quality control assessment and imputation the data
set consisted of 8,365 non-related children of European descent with 2,608,006 SNPs
available for analysis. The number of SNPs increases because the imputation procedure
is able to impute SNPs that were not initially genotyped, using the related structure of
the genome due to linkage disequilibrium. Of these 8,365 we removed 244 individuals

with no data for all outcomes giving a sample size of 8,121.

7.2.2 Exposure and outcomes

BMI allele score exposure We created an allele score of the BMI variants, con-
structed using a weighted sum of 32 loci known to be associated with BMI (listed in
Table B.1). The weights were generated from the effect size of BMI associated SNPs
found in a large GWAS [150]. This GWAS did not include the ALSPAC study [151].
We constructed the score in terms of the number of BMI-increasing alleles so that a

higher score corresponds to a higher BMI:

. di; xe if d; ; is BMI increasing
score(i) = Z ’ n
Joloei (2—dp;) x e otherwise

where d is the number of BMI-increasing alleles of individual i such that 0 < d < 2,
and ¢; is the effect size of loci /, scaled relative to the effect of FTO which has the largest
effect size of these loci. We standardised the BMI allele score to have a mean of zero

and standard deviation of one.

Phenotypic outcomes We compiled a set of 172 continuous variables from the
ALSPAC dataset, comprising a range of variables recorded between birth and 15 years

old, including primary measures (from questionnaires or focus clinics) and also derived
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variables. The dataset was compiled by selecting a set of complete clinic assessment
based data files from the ALSPAC cohort, each corresponding to a separate measure-
ment event.

The intention is to include a random subset of available clinic measures, rather than
select variables where we have an a priori interest or evidence in their association with
BMI. The data files were processed in turn to reduce the size of the dataset by man-
ually removing variables where multiple similar variables were found. We did this
by including a composite score measure where available (and removing its component
phenotypes) or keeping only one measure from each similar group of variables. This
delivered a diverse range of 160 arbitrarily selected variables at a range of time points
to give a rich outcome dataset (given in Table B.3).

We also included a selected set of outcomes, as we need to ensure that the dataset
contains variables both with and without previous evidence of an association with BMI,
such that we can validate our screening approach. We therefore included the following
12 outcomes (in addition to the 160 that were randomly selected), previously suggested
to be associated (perhaps causally) with BMI: glucose [138], insulin [138], leptin [136],
age at menarche [133], systolic blood pressure [132] and C-reactive protein [136, 141],
intelligence and attainment measures (Wechsler Intelligence Scale for Children (WISC),
Diagnostic Analysis of Nonverbal Accuracy (DANVA), and literacy scores (2 pheno-
types)) [152], lung function [153] and the Home Observation for Measurement of the
Environment (HOME) score [154]. Further details are given in Table B.2. The number
of participants with a value for each outcome varies across outcomes. Where outcomes
were available at multiple time points we used the most complete measure. We removed
values of each outcome that were coded as missing, and refer to this as the original

dataset.

7.2.3 Statistical methods

We performed all analyses using Stata v11.2 (StataCorp LP, 2009; College station, TX,
USA) [155]. We follow the general pipeline given in Figure 7.1, such that our main
analysis to search for associations was a two-stage process. The first stage involved a
large-scale analysis to screen for associations of the BMI allele score with all outcomes

in our dataset. The second stage followed up ‘top’ associations identified in the first
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stage, with an IV analysis and sensitivity analysis assessing the degree of pleiotropy.

Stage 1 tests

In the first stage we began by transforming the outcome variables in order to harmonise
this dataset, such that a single analytical approach can be applied in the subsequent BMI
score screening step. We used a rank-based inverse normal transformation to ensure all
outcomes were normally distributed, and standardised these to give distributions with a
mean of zero and standard deviation of one. We tested the associations of the BMI score
with all transformed outcomes, using univariate linear regression analysis, with robust
standard errors (the robust option). We ordered the resulting associations by P value to
rank the associations from strongest to weakest (where a rank of 1 denotes the strongest
result). The rank position gives an indication of the relative strength of associations of
the allelic score with the outcome variables. We identified associations of outcomes
and allele score with, as an illustration, a nominal P < 0.05 and took these forward for
further tests in the second stage analysis.

In addition to the P values of these tests we report Bonferroni adjusted P values
calculated by multiplying the P values by 160 to account for the number of tests per-
formed. We exclude the validation set from these calculations as we have selected these
phenotypes based on prior knowledge. The Bonferroni adjusted P values are conser-
vative because the Bonferroni correction assumes the tests are independent but this is
not the case for the outcomes in our dataset. We determine the proportion of our top
results that are expected to be false positives, the false discovery rate (calculated as the
expected number of results with P value < 0.05 by chance alone (160 x 0.05) divided
by the number of results found with a P value < 0.05). We also report alternative per-
mutation P values — the probability that an outcome at rank i, would be found at rank
Jj where j < i given there is no association between the BMI score and all outcomes.
These are estimated using permutation testing, and we again exclude the validation set
from this analysis. We permute the values of each outcome variable across participants
and repeat the stage 1 analysis, performing linear regression of the BMI score on each
outcome and generating a ranking of associations. We repeat this 5,000 times to de-
rive an empirical distribution of the rank position of each outcome. For each outcome

at rank i we report the proportion of these tests where the outcome is found at rank j
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where j <1i. This gives a P value that accounts for the tests with the other 159 outcomes

in the dataset.

Stage 2 tests

In the second stage of our analysis we tested each stage 2 outcome (that had an as-
sociation with P < 0.05 in stage 1) with a formal instrumental variable analysis using
two-stage least squares regression (the Stata ivregress command). Although the BMI
allele score is a risk factor for lifelong BMI we did not observe lifelong BMI and so
instead use this score to estimate the effect of BMI at a single time point, at age 8, on
the outcomes. We log-transformed then standardised BMI at age 8 so that its distribu-
tion was approximately normal with a mean of zero and standard deviation of one. We
used the original outcome dataset (rather than the inverse normal transformed version)
and transformed any variables with skewed distributions (identified visually) to give
distributions that were approximately standard normal (with mean of zero and standard
deviation of one). We converted outcomes with distributions that were not normal and
not right skewed to binary variables with approximately equal numbers in each group.
We used linear and logistic regression for the second stage of the instrumental variable
analysis for normally distributed and binary outcomes respectively. Finally, we also
tested the associations of observational (log-transformed) BMI at age 8 using the same

protocol with the 172 outcome variables, for comparison.

Testing validity of the instrumental variable assumptions

As discussed in the previous chapter, Mendelian randomisation tests require the IV
assumptions to be satisfied. These assumptions are; 1) the genetic IV is associated
with the exposure (observational log BMI at age 8), 2) the genetic IV only affects the
outcome through its effect on the exposure, and 3) the genetic IV is independent of all
factors confounding the association between BMI and the outcomes. We used univariate
linear regression (the Stata regress command) to test the strength of the BMI allele
score as an instrument for observational BMI, where a larger F-statistic implies greater
power [156]. We cannot directly test assumptions 2 and 3, but we can look for evidence

that the assumptions do not hold. If the 3 core instrumental variable assumptions hold,
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and either of the point identifying assumptions hold?, the estimated effect of BMI on an
outcome should be consistent across different variants. We explored this in two ways,
each of which compares the results when different instrumental variables are used. The
first compares the results using two independent instrumental variables: 1) F7TO (the
SNP most strongly associated with BMI), and 2) the remaining 31 variants (we refer
to this as the 31-allele score). FTO explains around a quarter of the variance of BMI
explained by the other 31 combined (31 variants were associated with BMI ? = 0.0215,
FTO was associated with BMI 2 = 0.0055). Furthermore, we tested the strength of the
associations of each instrument to ensure they were both strongly associated with BMI.

The second approach we used compared the effect estimates across the variants in-
dividually. We estimate these individual effects by performing a single IV regression
(for each outcome), with separate IV’s in this model for each of the 32 genetic variants.
This is known as an over-identification test®, because when there are more instruments
(genetic variants) than dependent variables (exposures), an instrumental variable anal-
ysis is referred to as over-identified. We then test for differences in these effects using
Hansen tests [159]. The null hypothesis states that there is no evidence of differences
in the IV effect estimates between different variants. Thus rejection of this test suggests
there are differences between the estimates based on each of the variants. This may sug-
gest that the instrumental variable assumptions do not hold, for example if the effects of

the variants are not solely mediated through BMI.

Sensitivity analyses We present results using the original data as our main analy-
ses, where the sample size for each test varies depending on the outcome. This creates
a potential for differences in P values to be caused by differences in sample size, or bias
due to missing data. In order to assess the impact of this we repeated our analysis using
an imputed dataset. We compared the ordering of the outcome variables by P value
across the original and imputed versions using Spearman’s rank correlation.

The imputed dataset consisted of all 8,121 individuals and 172 variables in the orig-

Estimating an effect is referred to as point identification and an extra assumption is needed to be
able to do this. These assumptions are either constant treatment effect or monotonicity for continuous
outcomes, and no effect modification or monotonicity for binary outcomes. For example, the assumption
of constant treatment effect says that the causal effect of the exposure on the outcome does not change
across the population. For further details we refer the reader to [127, 157, 158].

30ver-identification tests were performed with continuously updating estimator (CUE) via general-
ized method of moments (GMM).
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inal dataset. We used multiple imputation using chained equations (ice command in
Stata), to impute missing values for all variables, and generated 20 imputation data
sets [160]. We used predictive mean matching (match option) for non-normal (or log-
normal) variables because it does not assume normality, to prevent extrapolation beyond
feasible values. To inform the imputation we included additional socio-economic po-
sition (SEP) variables which may help to explain missingness: household social class,
maternal education, smoking during pregnancy, and ethnicity. The purpose of this is to
satisfy the missing at random (MAR) assumption of the imputation method; the proba-
bility of missingness does not depend on the missing data conditional on the observed
data. We included the BMI allele score and all outcomes in our imputation, to inform
the prediction of each outcome. The large number of variables in our dataset should
also help to satisfy the MAR assumption, as the variable set should include variables

predictive of both the variables and missingness of the variables [161].

7.3 Summary

In this chapter we have presented a novel approach to search hypotheses for potentially
causal relationships to follow up. We have described the methods of a proof-of-principle
analysis to search for the causal effects of BMI. In the next chapter we present the results

of this work.



Chapter 8

Results

In this chapter we present the results of our proof-of-principle analysis to search for the
causal effects of BMI, the methods of which were described in Chapter 7.

8.1 Crude associations

The association between the BMI allele score and observed BMI across childhood
strengthens with age and stabilizes at around age 10 (Table 8.1). A standard devia-
tion (SD) increase in BMI allele score was associated with a 0.163 SD increase in log
BMI at age 8 (95% confidence interval (CI): 0.14, 0.19, F=140.66). Furthermore, we
found little evidence of associations with common socio-economic confounders com-
pared with many strong associations for observational BMI at age 8 (Table 8.2). These
tests support the notion that the BMI allele score may be a valid instrument for life-long
BMI.

8.2 Results of stage 1 and stage 2 tests

Our stage 1 tests found the BMI allele score was associated with 21 outcomes, using
an unadjusted P < 0.05 threshold (Table 8.3). Of these, 14 outcomes were from the
160 outcomes we randomly included in our dataset (test of proportions P = 0.030),
compared to 8 expected by chance alone (160 x 0.05, making the conservative assump-

tion that all outcomes are uncorrelated). Hence we would expect 6 of the 14 identified

161
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outcomes to be true associations (false discovery rate of 0.571). We found stronger as-
sociations than would be expected by chance, illustrated by the QQ plot in Figure 8.2,
suggesting that BMI affects many outcomes. After Bonferroni correction only HDL at
age 9 was found with a P value below P < 0.05 whereas using the permutation P values
we found 8 associations with P < 0.05. In comparison, we found 57 stage 1 associations
with P < 0.05 using observational BMI at age 8. Of these, 48 were from the 160 ran-
domly included in our dataset (test of proportions P < 0.001), compared to 8 expected
by chance alone. The instrumental variable effect estimates (stage 2 results) are given
in Table 8.4, Figure 8.1a and Figure 8.1b (and observational estimates are also provided
for comparison).

The stage 1 direct tests identified several known associations, such as with leptin and
age at menarche. The two-stage least squares IV analysis estimated that a 1 SD increase
in log BMI at age 8 increased leptin at age 9 by 0.92 SD (95% confidence interval (CI):
0.77, 1.07). A 1 SD increase in log BMI age 8 was associated with a 201.7 day earlier
age at menarche (95% CI: 112.3, 291.1). We also identified novel effects of BMI. For
instance, a 1 SD increase in log BMI at age 8 increased the odds of having a global
self-worth score > 20 by 54% (95% CI: 1.10, 2.14). We list all outcomes in our dataset
in Table B.3 and the results of the stage 1 tests in Table B.4, so that readers can view
results where the CI includes the null value. The observational estimates were nearer the
null than the IV estimates, and we found differences between the IV and observational

estimates for 6 phenotypes, using the Wu-Hausman test (Table 8.4).
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Figure 8.1: A comparison of the observational and instrumental variable estimates.
Continuous outcomes: The standard deviation change of outcome for a 1 SD increase of log
BMI aged 8. 1V estimate of effect using two-stage least squares regression of log BMI at age 8
as the exposure, with robust option. Observational estimates are the SD change of the outcome
for a 1 SD increase in log BMI at age 8.

Binary outcomes: Odds ratio between groups of outcomes, for a 1 SD change of log
BMI aged 8. Observational estimates are the odds ratio between outcome groups. Categories

for binary variables given in Table B.6.

Graphical illustration of the results in Table 8.4.
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8.3 Evidence of violation of IV assumptions

The 31 SNP score and FTO allele were both strong instruments for log BMI at age 8.
A 1 SD increase of the 31-SNP score was associated with a 0.146 standard deviation
increase in log BMI at age 8 (95% CI: 0.12, 0.17, F = 112.70). A 1 SD increase of FTO
was associated with a 0.074 standard deviation increase in log BMI at age 8 (95% CI:
0.05, 0.10, F = 28.18). We found little evidence of pleiotropy, linkage disequilibrium
or population stratification as the tests with the F70 and 31-SNP scores were highly
consistent (Figure 8.3a and Figure 8.3b and Table 8.5). We found evidence using the
Hansen tests of differences between the estimated effects of BMI using each instrument
for 5 outcomes, such as apolipoprotein Al, apolipoprotein B, insulin, leptin and the
emotional symptoms score (Table 8.6). This may be due to chance, or alternatively
may suggest that the genetic variants related to BMI have pleiotropic or heterogeneous
effects on these outcomes.

Table 8.1 shows the associations of FTO and the 31-allele score respectively, with
BMI across childhood. We found evidence of an inverse association of F70 with BMI
in early childhood, as previously suggested [162]. For instance, an increase of 1 BMI
increasing FTO allele was associated with a 0.059 decrease of log BMI at age 1 year 8
months (95% CI: -0.096, -0.022). In contrast, the 31-allele score positively was associ-
ated with BMI at all ages measured.

8.4 Sensitivity analyses

The outcomes had varying numbers of missing values (as shown in Figure B.1), which
means there were differences in statistical power across outcomes. However, the rank-
ing of our main analysis is highly correlated with the ranking of the imputation dataset
(Spearman’s rank correlation of 0.919 (P < 0.001)).
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Outcome variable (original data with variable N) ~ CUE!
Test statis-  95% CI P value? Hansen
tic P value?
Linear regression of continuous normally distributed outcomes. Test statistic is the mean difference (SD)
per 1 SD greater log BMI age 8 or percentage difference per 1 SD greater log BMI age 8 3

Leptin, 93 % 0.934 0.74,1.13 <0.001 0.019
CRP, 934 0.410 0.22, 0.60 <0.001 0.606
Age menarche 4 -0.508 -0.82, -0.20 0.001 0.077
HDL, 93 -0.447 -0.65, -0.24 <0.001 0.388
SBP, 74 0.314 0.12,0.50 0.001 0.456
IL6, 93 0.250 0.07,0.43 0.006 0.885
Apolipoprotein B, 9 0.339 0.04, 0.64 0.028 0.010
Triglycerides, 9 3 0.245 0.04, 0.45 0.020 0.455
VLDL age 9 3 0.245 0.04, 0.45 0.020 0.454
Apolipoprotein al, 9 -0.302 -0.53, -0.07 0.010 0.005
Insulin, 1534 0.781 0.28,1.28 0.002 0.013
Hygiene Score, 4 0.299 0.08, 0.52 0.007 0.265
FVC: lung function, 8 4 0.111 -0.05, 0.27 0.180 0.670
Glucose, 154 0.312 -0.01, 0.63 0.059 0.877

Linear regression of binary outcomes. Test statistic is the change in probability that outcome has value 0
for a 1 SD increase in log BMI age 8

Enjoyment of School Score, 4 0.008 -0.24, 0.25 0.949 0.309
Self Esteem: Scholastic Competence, 8 0.075 -0.10, 0.25 0.408 0.134
Attention/activity symptoms score, 11 0.174 -0.08, 0.43 0.184 0.702
SDQ emotional symptoms score, 6 0.066 -0.20, 0.33 0.621 0.046
Self Esteem: Global Self Worth Score, 8 0.087 -0.11, 0.28 0.374 0.097
Burden of compulsions/obsessions score, 7 0.035 -0.06, 0.13 0.475 0.587
Particular fears score, 7 -0.071 -0.28,0.14 0.500 0.283

Table 8.6: Overidentification tests of IV using CUE.

Abbreviations: BMI, body mass index; CI, confidence interval; SD, standard deviation; 1V, instru-
mental variable; VLDL, very low density lipoprotein; IL6, interleukin 6; SBP, systolic blood pressure;
HDL, high density lipoprotein; SDQ, Strengths and Difficulties Questionnaires; FEF, forced expiratory
flow; LF, lung function; FVC, forced vital capacity.

Categories for binary variables given in Table B.6.

Full names of variables are given in Table B.3.

Tests use all 32 SNPs separately in the model.

! CUE: continuously updating estimator, with robust standard errors (robust option).
2 P values are not adjusted for the multiple tests performed.

3 Log transformed outcomes, such that distributions approximately normal.

4 Variables that are in the ‘validation set’, that were chosen for inclusion using a priori knowledge of
their association with BMI.
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(b) Binary outcomes

Figure 8.3: Testing invalidity of IV assumptions: associations of two instrumental vari-

ables using distinct SNP subsets.

Comparison between the SNP subsets: (1) 31 SNPs (excluding FTO SNP) and (2) the FTO SNP
only. IV estimate of effect using two-stage least squared regression of log BMI at age 8 as the
exposure. Binary outcomes: Odds ratio between outcome groups, for a 1 SD change of log BMI
aged 8. Graphical illustration of the results in Table 8.5. Categories for binary variables given

in Table B.6.
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8.5 Discussion

We end this section with a discussion of the main findings of our analyses, the lim-
itations of this work and the issues of causal inference in Mendelian randomisation

analyses.

8.5.1 Main findings

Epidemiologists have struggled to produce robust replicable evidence of the causal ef-
fect of risk factors [163]. Population geneticists have been extremely successful in using
hypothesis-free approaches to produce replicable associations. We have shown that it is
possible to use a similar hypothesis-free approach, using Mendelian randomisation to
highlight the strongest effects of an exposure in a large sample of individuals.

We used a Mendelian randomisation analysis to screen for potentially causal ef-
fects. Our stage 1 analysis tested the association of the BMI allele score directly with
each of the outcomes. Identifying known effects with this approach validates the use of
this score as an instrument for life-long BMI. The BMI allele score was most strongly
associated with leptin, which is produced in adipose tissue and is involved in satia-
tion [164]. This result is consistent with previous research [136]. Also consistent with
previous studies, we identified effects of BMI on the following metabolic traits: glu-
cose, insulin, interleukin-6, systolic blood pressure [132], low and high density lipopro-
tein cholesterol, triglycerides, and C-reactive protein [135,136,138,141,165-167]. The
BMI allele score was also strongly inversely associated with age at menarche. Previous
observational studies have reported that age at menarche is inversely associated with
BMI [168], and a recent study also used Mendelian randomisation to argue that BMI
affects age at menarche [133]. We found a novel positive effect of BMI on a global
self-worth score. We did not replicate the novel associations, as our aim in this work is
to carry out a proof-of-principle analysis demonstrating our hypothesis-free searching
method. We found more associations using BMI aged 8 than with the BMI allele score.
This may be due to reverse causation (because some of the outcomes actually affect
BMI) or due to confounding, and this highlights the benefit of a Mendelian randomisa-
tion analysis [30]. Alternatively, this could be due to the lower power of tests with the

allele score, compared to observational BMI.
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The observational estimates were consistently closer to the null than the IV esti-
mates. This may be due to the winner’s curse because in stage 1 we rank all 172 esti-
mates of the allele score on the outcomes, such that the highest ranked are more likely
to be higher than their respective true values because of the random variation of these
sample estimates about their true values. The stage 2 estimates (also ranked by the stage
1 estimates) may also be affected by this winners curse because the stage 1 (direct) and
stage 2 (2sls) models are highly related. The estimates using the observational BMI
exposure may not be affected to the same extent as they are ranked by the results us-
ing the BMI allele score, with which it is not perfectly correlated. Alternatively, the
IV estimates may be more extreme than the observational estimates because the allelic
score is a measure for life-long BMI, so the effect on outcomes may be larger due to the

cumulative effects of BMI across the life course.

The validity of our results depends on whether the instrumental variable assump-
tions hold, such that the genetic variants only affect the outcomes through BMI (the
exposure). We ensured our BMI allele score was a strong instrument for BMI, and was
not associated with common confounding variables such as sex and potential socio-
economic confounders such as household social class. In contrast, BMI at age 8 was
associated with confounders consistent with the social patterning reported previously
[169-171].

A number of mechanisms could invalidate the second instrumental variable assump-
tion: that the genetic variants only affect the outcomes through BMI at age 8. These in-
clude genetic induced confounding through horizontal pleiotropy (where a locus affects
several outcomes directly [121]), population stratification and linkage disequilibrium,
each of which could add a causal path from the IV to an outcome which was not medi-
ated by BMI. The effect estimates when using two independent instruments (F70 and
the remaining 31 variants) were consistent providing evidence against pleiotropy be-
cause it is unlikely that two independent instruments suffer the same pleiotropic effects.
However, we found evidence of heterogeneity when testing the 32 SNPs individually
using Hansen tests, for 5 of the 21 ‘top’ results. This may indicate either the core or
point identifying IV assumptions are invalid. Any biases introduced by violations of
these assumptions may be amplified due to the low power of the individual SNPs. This
is because these weak instruments account for only a small proportion of the variance
of BMI, such that their effect through BMI is small compared with the strength of the
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association through one of these alternative pathways [126].

The stage 1 analysis estimated the association of the BMI allelic score and each
outcome, rather than providing an estimate of the effect size, as is estimated in the stage
2 IV analysis. While an estimate of the effect size is generally preferable, the stage 1
tests are important to consider because they only depend on the core IV assumptions,
whereas the stage 2 tests also require point identifying assumptions. Also, some of
the ways the IV assumptions can become invalidated are circumvented in the stage 1
tests. This is because the stage 1 test requires the exposure to be defined, but a variable
representing this exposure is not actually used in the test of association. This is useful
because the BMI allelic score is a measure of lifelong risk of increased BMI, but we
only have measures of observational BMI at a set of discrete time points, rather than
a composite measure representing observational lifelong BMI. The use of BMI at a
single time point, at age 8, is a valid exposure if all pathways through BMI at all other
ages (prior to measurement of the outcome) also pass through BMI at age 8. If this
is not the case (and this is likely) then the IV assumptions are false. For example,
we found a different effect of the FTO SNP and 31 SNP allele score on BMI in early
childhood, which indicates that these variants affect BMI through different pathways.
Any pathway from the genetic variants to an outcome through BMI at an age other than
age 8 would invalidate the instrumental variable assumptions. This is not a problem for
our stage 1 tests, as we need only specify the exposure as ‘lifelong BMI up to the point
of outcome measurement’. Furthermore, this removes the issue of measurement error

in the observed exposure variable since it is not actually used in the model.

8.5.2 Study limitations

We now discuss some further limitations of our analysis. We tested only for linear rela-
tionships and hence it is possible that non-linear relationships exist. We used an inverse
rank normal transformation, which may not be appropriate for numeric outcomes with
only a small number of values, as the rank within each set with the same value is ran-
domly generated, and this may add noise to the data. Ranking results means that we
should expect the true strength of associations to be less than we reported, due to the
winner’s curse. This means that the effect sizes are not reliable and need replicating in

a hypothesis-driven manner. However, conventional epidemiological studies also suffer
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this due to flexibility in study design, where several methods may be used in turn to
examine a particular relationship and the strongest result reported [172].

The size of an effect estimate may be reduced due to developmental compensation
(or canalisation) where a foetus may develop to protect itself from the adverse effects of
a particular polymorphism that is expressed during foetal development. This protection
may continue throughout the life course such that a high BMI will have fewer health
implications, and our reported associations may be reduced [120,121]. Dynastic effects,
where the outcome trait of the child is also affected by the parental exposure caused
by the parental genotype, can also affect the size of an effect estimate. For example,
parents that are genetically predisposed to higher BMI (the parental exposure) may
rarely encourage their child to exercise (outcome trait of the child). This means that
the amount of exercise of a child will be associated with the parent’s genotype and
hence also the child’s genotype — the association between exercise and the child’s BMI
is confounded by the correlated genome of parent and child.

Our dataset included the most complete version of each repeated measure, which
was usually at the earlier time point. While this may improve the statistical power of
our tests, this benefit may be offset by the reduction of power because associations are
often less pronounced at younger ages (as shown in Table 8.1 for BMI). Mendelian ran-
domisation analyses have low statistical power compared to conventional observational
analyses, because genetic variants typically only explain a small proportion of an expo-
sure’s variance. Although we used a combined allelic score to maximize the power from
the genetic predictors, some associations may not have been detected due to a lack of
power. Furthermore, performing multiple tests reduces the statistical power as we need
to account for the number of independent tests we performed. The varying degrees of
missingness of the outcome variables means: 1) it is possible the associations are bi-
ased if the outcome data are not missing at random (conditional on the variables in the
model, i.e. observed BMI or the allelic score), and 2) the ranking may be affected by
differences in power amongst the outcomes, including false negative results where the
power is too low to detect an association. Using the time point with the largest available
sample sizes for each trait reduces the risk of bias due to missingness.

Traditionally, hypothesis-driven studies, where many hypotheses are tested indepen-
dently by several research teams, suffer the issues of multiple testing and selection bias

from the researcher choosing which hypothesis to test and the methods to use, as well as
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publication bias [106]. A large proportion of null findings are unpublished such that it is
not possible to determine the true probability the reported result would occur by chance.
This is a most problematic form of multiple testing because we cannot know how many
and what associations have been tested. In contrast, by searching for hypotheses in a
single study we are able to report the results of all analyses, including ‘null’ results, so
that our work does not contribute to this publication bias. We have provided the results
of all stage 1 tests in Table B.4. We presented unadjusted and Bonferroni corrected P
values, and estimated a false discovery rate of 0.571, such that 6 of the 14 associations
we found with a P value < 0.05 (excluding our validation set) may indicate causal re-
lationships between BMI and these outcomes. Given the high degree of confounding
in observational data, the adjusted P values and false discovery rate are likely to be
conservative estimates, because they both account for the number of independent tests,
but the outcomes in our dataset are not independent. We also provide permutation test-
ing P values that are an appropriate way to assess the results as this method implicitly
accounts for the number of tests performed. A result is less likely to achieve a rank
of 1 by chance alone as the number of tests increases. The P values of the Bonferroni
and permutation testing were very different highlighting the conservative nature of a
Bonferroni correction when outcomes are not independent. Appropriately adjusting P
values (or equivalently using appropriate statistical thresholds) and reporting all results
of a study both help to reduce reporting bias and improve the reliability of published
research [163].

A Bonferroni correction should be used when concerned with the global hypothesis,
such that the researcher wants to control the probability that at least one test is incor-
rectly shown to have an association by chance, known as a false positive finding [173].
Bonferroni corrections use a more stringent threshold such that while the number of
false positive findings is lower, the number of ‘true associations that are not identi-
fied (because their associated P values are above the Bonferroni corrected threshold) is
higher. This is not helpful for hypothesis-searching studies because we may then miss
potentially important associations. Also, the cost of a false positive association is lower
in hypothesis-searching studies compared with traditional epidemiological studies be-
cause the results will be followed up with a further analysis rather than claimed to be a
definitive result. In a hypothesis-searching study the researcher may be happy to follow

up n tests knowing that m% of these may be false positives, such that it may be more
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appropriate to control the false discovery rate. This false discovery rate can be adjusted

by changing the P value threshold.

8.5.3 Determining causality

The observational associations reported by previous EWAS studies may be caused by
bias or confounding and do not provide reliable evidence of causation. We have used
Mendelian randomisation to search for true, causal relationships. Our analyses with
observational BMI across childhood found a much larger number of strong associations,
a distinction that has been previously reported [30]. EWAS studies may be worthwhile
to test observational relationships, which can then be followed up with a Mendelian
randomisation analysis. However, observational associations may be weaker than the
true causal effect because masked confounding — where a direct effect between two
traits is not observed because their respective associations with a confounder conceals
this association — and measurement error can move associations towards the null [174].
The pheWAS approach has been previously used to identify associations between a set
of genetic variants and a set of phenotypic variables [116]. Our approach extends the
pheWAS approach in order to identify potentially causal associations. While pheWAS
test the association of individual SNPs with observed phenotypes, we use an allelic
score composed of variants known to be associated with a particular risk factor as an
instrumental variable.

While our approach provides evidence of causality, the direction of this causal effect
is less clear, as illustrated in Figure 8.4. Instead of our hypothesized relationship, it
is possible that the allele score actually directly affects the ‘outcome’, which in turn
affects BMI, our exposure variable. For instance, as leptin is involved in satiation it
is possible that the BMI allelic score, or a subset of variants of which it is composed,
affects BMI through leptin rather than vice versa. Currently, our understanding of the
biological effects of these variants are often not sufficient to have certainty over the
direction of the mechanism of action. Whilst it is not possible to directly test this, this
can be investigated by comparing the effect estimates of independent instruments, as
if two instruments affect the ‘outcome’ through the ‘exposure’ the estimated effect of
BMI on an outcome should be consistent across different variants.

We believe hypothesis-free searching with Mendelian randomisation is a valuable
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first step towards identifying causal effects, without specifying a particular hypothesis
a priori. Where possible it would be informative to test the association of an allelic
score of an ‘outcome’ (e.g. leptin) with observational BMI, to further elucidate causal-
ity through a bi-directional analysis [121]. To ensure associations found are not due
to reverse causation (where the ‘outcome’ has a causal effect on the ‘exposure’) each
allelic score should be composed of variants that have a strong association only with the

‘exposure’ in this bi-directional analysis [175].

8.6 Conclusions

In this and the preceding chapter we have introduced a general pipeline that can be used
to search for causal effects of an exposure using Mendelian randomisation. We have
demonstrated this hypothesis-searching approach using BMI as an exemplar. Unlike

traditional hypothesis-driven approaches we test the association with a large, randomly

BMI allele Observational

score BMI Cltoine

(a) The intended pathway we have investigated, where the BMI allele score is an IV
for BMI and the variants affect the outcome solely through observed BMI in child-
hood.

BMI allele Observational
score BMI

Outcome

(b) An alternative causal pathway, where the allelic score affects BMI indirectly
through the outcome variable.

Figure 8.4: Graphs illustrating two possible causal pathways to explain associations of
the BMI allele score with the outcomes. It is possible that these two pathways both
occur for a given outcome, such that the graph would become cyclical. Abbreviations:
BMLI, body mass index.
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selected set of phenotypes, rather than specifying a hypothesis to test a priori. We have
found that observational BMI was associated with a large number of phenotypes, illus-
trating the problematic nature of observational tests due to the confounding prevalent
between observational phenotypes. These associations in observational data do not indi-
cate causality. In contrast, our genetic instrument was associated with fewer phenotypes
because (subject to instrumental variable assumptions) its constituent alleles are not as-
sociated with confounding factors, and the causal direction can be investigated because
the genome exists prior to the observed phenotypes. We used a set of positive controls
to validate the use of this hypothesis-searching method.

This scalable and systematic approach can be repeated with Mendelian randomisa-
tion variables of other exposures, in order to gradually determine the causal structure of
an otherwise complex network. As with GWAS, associations identified with this type of
analysis would need further investigation to validate the relationship through replication

studies and elucidate the direction of causality.



Chapter 9
Conclusions

In this thesis we have described two applications of data mining in an epidemiological
context — assisting systematic reviews and assisting hypothesis selection. In this final

chapter we summarise this work, and describe potential areas of future work.

9.1 Thesis summary

Part I of this thesis presents work investigating the use of text mining to automate el-
ements of risk of bias assessments of systematic reviews. We identified and addressed
three key objectives to assist risk of bias assessments and the systematic review process.
These are to: 1) identify relevant sentences within research articles, 2) rank articles by
risk of bias and 3) reduce the number of assessments the reviewers need to perform by
hand.

To achieve these objectives we used text mining to make predictions using the text
content of research articles describing clinical trials. The predictions corresponded to
the following methodological properties of studies that affect the risk of bias: 1) the
method of random sequence generation, 2) the concealment of participants allocations
to the study groups, and 3) the method of blinding of participants and personnel. We
learnt two types of models, at the sentence and article level. The sentence level models
predict the relevance of each sentence for each risk of bias property. The article level
models predict the risk of bias of a study due to each risk of bias property, as described

in the text of an article.
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We were able to rank sentences by relevance with very high ranking performance,
so it is possible to show a reviewer which parts of an article are important for each risk
of bias property. We have shown that it is possible to rank articles by risk of bias far
better than random, such that the articles describing studies with low risk of bias can
be prioritised during a systematic review. We found that it was possible to predict the
risk of bias values with a certainty at least as high as a human reviewer for at least 33%
of articles. This indicates great potential to reduce the time needed to manually assess
research articles by hand.

We discussed how rapid reviews in particular could benefit from a method to rank
articles from low to high risk of bias. This is because for this type of review only a
subset of the articles may be reviewed due to time constraints, such that it is important
to assess the best quality evidence first. This led us to define rate-constrained ranking
tasks, of which ranking articles for rapid reviews is an example.

We presented a novel metric called the rate-weighted AUC (rAUC), to evaluate mod-
els used to rank examples for rate-constrained ranking tasks. In the rapid review context,
the rAUC is a measure of ranking performance that accounts for the likely number of
articles that will be reviewed in the allotted time. We showed that the rAUC should be
used for rate-constrained ranking tasks as if other metrics such as nDCG or AUC are
used to choose the best ranking model then a suboptimal model may be chosen.

We also presented a novel approach for generating confidence bounds around ROC
curves, which we call rate-oriented point-wise confidence bounds. These bounds consist
of a series of confidence intervals at specified rates along the ROC curve. Each confi-
dence interval lies along a rate isometric and denotes the interval within which we ex-
pect, with 95% probability, the consensus curve of a set of new samples generated from
this consensus curve to cross this rate isometric. These bounds are effective because
they use the positions of nearby points on a ROC curve to infer where the ROC curve
is likely to cross a given rate isometric. We suggest that rate-oriented point-wise confi-
dence bounds are particularly appropriate for rate-oriented tasks, where a researcher is
concerned with the performance of a model at particular rates.

Part II began with an exploration of currently accepted data mining applications
in epidemiological research. One approach, the environment-wide association study
(EWANS), is used to search for associations between observational variables. A weakness

of this approach is that it is unable to determine whether associations between observed
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traits are causal. Another approach, the phenome-wide association study (phe WAS), is
used to identify pleiotropy on the genome, where genetic variation is associated with
multiple phenotypes. However, this approach does not attempt to determine if a causal
relationship exists between two observed traits that are associated with the same genetic
variant. We introduced a novel approach that uses Mendelian randomisation to search
for causal associations between a single exposure and a potentially large set of observa-
tional variables. This is a hypothesis-generating approach, to identify potentially causal
associations that can then be followed up with a more thorough analysis.

We performed a proof-of-principle analysis to demonstrate our approach, search-
ing for the causal effects of BMI. We found several associations already shown to be
causally associated with BMI, providing validation for our approach. For example, the
top association was with leptin, a hormone known to be involved in satiation. Our ap-
proach found far fewer associations compared to the EWAS alternative, because our

method does not suffer from the confounding present between observational variables.

9.2 Future directions

In this section we present some key areas of future work.

9.2.1 Extending to other risk of bias domains

Our work exploring assisting systematic reviews focused on predicting three risk of
bias domains — sequence generation, allocation concealment and blinding. The auto-
mated prediction of two other domains, selective reporting and incomplete outcome
data, could also be investigated. This may require custom techniques, as we now dis-
cuss. Establishing the risk of bias due to selective reporting requires knowledge of the
analyses researchers have performed so that they can be compared with the reported
results, to determine whether some are unreported or whether the primary analysis has
been changed. This information is often available in trial protocols, so an automated
approach could attempt to extract this information from these documents and compare
this with the analyses reported in a research article.

The risk of bias due to incomplete outcome data can be assessed by examining the

loss to follow-up of a trial, the proportion of individuals that were originally regis-
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tered for a trial but for which the outcome data is not available. As this is a numeric
value automated prediction of this domain may therefore involve identifying the loss to
follow-up (if reported) in a research article of a trial, and using a threshold to determine

whether attrition is sufficiently low such that the risk of bias is also low.

9.2.2 Learning better models for risk of bias predictions

A limitation of our work is the small size of our risk of bias dataset (RoBAL), as de-
scribed in Section 5.5.1. Whilst the performance of our models is encouraging, it could
be improved further by creating a larger dataset with which to train the model parame-
ters. Manual dataset creation is very time consuming. However, as this data is created
during the risk of bias assessment process, data collection could be incorporated into
a risk of bias assessment tool. This functionality could be integrated into an already
accepted tool such as the Cochrane risk of bias tool, to minimise changes to the user
process.

A larger dataset would make it possible to investigate the use of more complex
models to predict risk of bias, which may improve performance. Given more data, we
could divide the data into a tuning set and a hold-out set. The tuning data is used to
test multiple models in order to decide which method is best for a particular task, using
cross validation to evaluate the models. This could involve trying different algorithms
(such as decision trees or naive Bayes), different feature sets or different parameters of a
particular model. A hold-out dataset is needed because, when selecting a model with the
best performance on the tuning data, the estimated performance may be optimistic. This
is for two reasons. First, when ranking models by performance it is expected that the top
performing models will be worse in the future, due to the winners curse. Second, if a
model is tuned too much on the tuning set it may over-fit this data, performing better on
the tuning data (even when evaluated with cross validation) than on new data, because
it does not generalise well to unseen examples. The hold-out set provides data that is
independent to the tuning data to evaluate the final model on unseen examples.

A larger dataset is also beneficial to increase the power to detect patterns in the
data. This improves the estimated parameters because the features are less likely to be
associated with our risk of bias properties by chance alone. This also means that more

complex patterns may be identified. As discussed in Section 5.5, interactions between
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words may also be important. In our work we used a bag of words representation with
unigram features, which treats each word independently. Additional features can be
used to model the relationship of a word with nearby words (using n-grams), or words
within the same sentence. When introducing word interactions a larger dataset is needed
so that there are sufficient examples of each word interaction to estimate the parameters
of a model.

An obvious example of a word interaction is a negation, using words such as not or
no that may precede other words. For instance, a study may state ‘we could not blind
participants’. In the current feature representation this negation cannot be represented,
and when predicting the risk of bias value of an article containing ‘not blind’ the oc-
currence of the word blind would indicate that low risk of bias is more likely. While
this example shows this will likely be important when predicting the risk of bias values
of an article, there may also be cases where this is beneficial for determining sentence
relevance. A word may add context that changes the predictivity of another word in the
same sentence. For instance, the word blind may not be relevant to the blinding prop-
erty when the sentence also contains words related to the eye, as this would indicate that
the text is referring to eye blindness rather than the blinding risk of bias property. In-
teractions between words encoded in a dataset may be restricted to couples of adjacent
words (known as bigrams), or they may include more distant relationships such as pairs
of words in a sentence.

In addition to word interactions, we could investigate creating additional features
using external information. An ontology could be used to map words to standardised
terms and entity types. For example, drug names could be mapped to an indicator vari-
able that denotes whether a drug is mentioned in an article, in addition to the original
features for the specific drug names. Furthermore, it may be useful to manually con-
struct custom look up tables that map terms to particular notions that may be relevant to
risk of bias. For example, we know that whether an outcome is subjective or objective
affects the risk of bias due to blinding. Hence, a feature denoting whether outcomes are
subjective or objective may improve model performance.

The risk of bias due to sequence generation, allocation concealment and blinding
are highly related. It may be beneficial to learn these properties together, such that
information about the label of one property can also help to predict the label of another

property. This is known as a multi-task learning approach. For example, a machine
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learning model called a classifier chain [176] that learns the labels sequentially may
be effective. For instance, sequence generation may first be predicted using a bag of
words representation. Allocation concealment is then predicted using a bag of words
representation and additionally the predicted sequence generation values. This means
that the relationship between the risk of bias properties can be represented in the model.
Marshall et al. have used a multi-task learning approach to predict risk of bias [22], as
described in Section 2.2.3.

9.2.3 Assisting systematic reviews

Researchers have suggested that we are heading towards an integrated system to auto-
mate systematic reviews. However, the following issues make this a challenging aim
at this time. Firstly, systematic reviews typically only include a small number of stud-
ies, which means it is important that the correct studies are included in the review and
the study properties are accurately extracted from articles reporting these studies, so
that correct inferences can be made. Also, currently not all the information needed to
perform the review is directly available in research articles describing the studies. Re-
viewers may contact authors directly to gain specific details. Hence, we believe that an
automated system for systematic reviews is not feasible at present.

Instead, we see a goal in the near future as an interactive system that focuses on
assisting reviewers with their risk of bias assessments rather than replacing reviewers
completely. Our prototypical tool provides a starting point, and this can be refined by
carrying out user testing to identify changes that would be beneficial. We believe that
future work should investigate the use of these assistive techniques in a practical setting.

Furthermore, while in this work we have focused on predicting three risk of bias
properties, there is much other work that can be used to assist systematic reviews, as we
described in Section 2.2.3. For instance, automatically identifying articles describing
RCTs is very useful because at the moment it is not possible to find these using the
search tools of databases such as PubMed, because this is not always indexed correctly.
Also, the screening of research articles according to their relevance to the research ques-
tion posed in a review is an important task. Systematic reviewers may benefit greatly
if risk of bias predictions and tasks such as those just mentioned were integrated into a

single system.
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9.2.4 Automating hypothesis generation pipeline

We suggest that automation of elements of the hypothesis generation pipeline proposed
in Section 7.1 would be highly beneficial to researchers. A set of tools could be imple-
mented at each step of the pipeline, where the user can input the details specific to their
particular research question. For example, a tool for creating the instrumental variable
could ask the user to input the SNPs and the weights (if using a weighted score) and
the tool could then retrieve the genetic data from a particular dataset (that the user has
access to) and generate the allele score.

There is also the opportunity to automatically determine which SNPs should be
used to construct a score, using an online database of GWAS results maintained by the
National Human Genome Research Institute [177]. This database can be used to retrieve
SNPs associated with an exposure of interest. Results can also include the effect sizes

which may be used as weights to generate a weighted allele score.

9.2.5 Testing the MR-pheWAS approach with a larger dataset

The MR-pheWAS analysis we performed with the ALSPAC dataset may not have de-
tected some associations because of a lack of power. Also, we included a relatively
small number of variables in our outcome dataset, to test this approach. We intend to
further test this approach using 500,000 participants in the Biobank UK dataset, and
over 1,000 outcomes. This will greatly increase power to detect associations, and al-
low us to search for the causal effects of BMI across a wide range of traits in an adult

population.

To conclude, in this thesis we have shown two applications of data mining techniques
in epidemiology. The data-intensive approaches we have used allow for efficient explo-
ration of potentially large amounts of data. The data-deluge experienced by epidemiol-
ogists will only increase, as more technologies emerge generating more and new types
of data. Hence, development and exploration of data-intensive approaches is imperative
if we are to use the available data to its full potential, to gain greater understanding of

causal mechanisms affecting public health.
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Appendix A

Assisting systematic reviews

A.1 Supplementary tables

Sequence generation Allocation concealment Blinding

random -9.59453 | envelop -7.47791 | blind -9.13649
randomis -8.72771 | alloc -6.49915 | doubleblind -6.70298
randomli -7.31203 | assign -5.72496 | ident -6.54086
alloc -6.79806 | randomis -5.48667 | mask -6.37214
toothbrush -6.14166 | random -5.3923 open -6.13433
vildagliptin -5.74126 | open -5.03137 | placebo -5.88171
morphin -4.45936 | code -4.93616 | capsul -4.40904
studi -4.33722 | central -4.67483 | unawar -4.09867
patient -4.18157 | pharmaci -4.61331 | run-out 4.02426

insulin -4.11151 | seal -4.3545 single-blind -3.91737
block -4.05597 | ident -4.15013 | alloc -3.86031
pioglitazon -3.97791 | particip -3.89514 | laparoscop -3.56122
altern -3.94826 | prepar -3.8115 repair -3.53471
sonic -3.7443 unawar -3.52678 | assign -3.43134
disulfiram 3.68192 conceal -3.50108 | open-label -3.41086
stratif -3.59312 | bottl -3.4588 staff -3.34353
alc -3.57684 | personnel -3.45346 | drug -3.33948
clonidin -3.42949 | peer -3.28038 | vitamin -3.32485
finasterid 3.36928 nurs -3.27809 | perform -3.26358
envelop -3.36342 | packag -3.23059 | renal 3.07396

Table A.1: Top 20 word stem predictors of sentence relevance and normalised coeffi-
cients, using TF-IDF features transformation with regularised logistic model.

193



194

APPENDIX A. ASSISTING SYSTEMATIC REVIEWS

Sequence generation Allocation concealment Blinding
alloc -0.81565 | envelop -0.85989 | placebo -0.9522
exclud -0.57037 | seal -0.62387 | blind -0.57947
95% -0.55694 | power -0.58893 | month 0.48464
activ -0.54465 | januari 0.54545 indic 0.48205
approv -0.5313 randomis -0.50639 | double-blind -0.47148
seal -0.5125 opaqu -0.50441 | review -0.44726
bmj -0.47563 | grate -0.48322 | potassium 0.44648
steril -0.47462 | assign -0.46926 | record -0.44491
societi -0.4737 jone -0.46643 | code -0.41714
prevent 0.4722 stratifi -0.44116 | explan -0.40479
computer-gener -0.46561 | committe -0.43763 | affect 0.39516
introduct -0.46232 | group 0.42335 1989 0.38382
envelop -0.45245 | bulletin 0.42048 suppli -0.37767
number -0.43431 | emerg -0.4112 wai -0.37735
receiv 0.43181 methodologi -0.40954 | order -0.37555
jone -0.42134 | bristol -0.40949 | acknowledg -0.37374
opaqu -0.4179 ident -0.39177 | withdraw -0.36513
18% -0.41268 | 3depart 0.38862 1998 0.35299
random -0.41121 | characterist 0.38378 test 0.34979
depart 0.40801 oral -0.37662 | wilcoxon 0.34921

Table A.2: Top 20 word stem predictors of article risk of bias and normalised coefficient,
using TF-IDF features transformation with regularised logistic model.
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Assisting hypothesis selection

B.1 Supplementary figures
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Figure B.1: Distribution of the percentage of missing data, in our 8,121 sample, across
the 172 outcomes
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B.2 Supplementary tables

SNP Imputation SNP Imputation
quality (72) quality (72)
rs10150332 0.9963 1s2867125 0.9997
rs10767664 0.9965 rs2890652 0.9888
rs10938397 0.9881 1s29941 0.9999
rs10968576 0.9995 rs3810291 0.7652
rs11847697 0.9688 rs3817334 0.9984
rs12444979 0.9975 rs4771122 0.9313
rs13078807 0.9966 rs4836133 0.9429
rs13107325 0.9972 rs4929949 0.9671
rs1514175 0.9984 1s543874 0.9965
1s1555543 0.9960 rs571312 0.9995
rs1558902 0.9967 rs713586 0.9993
15206936 0.9875 rs7138803 0.9980
rs2112347 0.9945 rs7359397 0.9988
1s2241423 0.9997 rs887912 0.9972
rs2287019 0.9991 rs9816226 0.9556
1s2815752 0.9964 1s987237 0.9994

Table B.1: List of SNPs used to construct the BMI allele score. BMI associated SNPs
found in the largest GWAS to date [150].
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Dataset Age at Data file name Variables chosen

measure-
ment
Clinic blood measures

Focus age 9 — bloods 9 yrs 6 f9.lipids All variables included. Includes leptin and

mnths CRP variables used in validation set

Focus age 15 —Fasting 15y 6m fasting15_v9_nodups  Glucose and insulin for validation set

bloods

Clinic other measures

MacArthur CDI: saying and 15m CDI All used, removed duplicates.

understanding scores

Focus age 7 Ty 6m f07_3d We only included systolic blood pressure
from this dataset, as one of our validation
variables.

Focus age 8 8y 6m f08_3b This dataset contains 861 variables, and
a set of derived scores. We kepts only
variables representing the main concepts
of this dataset, by including the scores.
DANVA, WISC and lung function vari-
ables used for validation set.

Focus age 9 9y 6m f09_3b We used the main scores from this dataset —
the “total raw accuracy score” and the to-
tal raw comprehension score”, included in
our validation set.

Haemoglobin levels Ty 6m haemoglobin_focus This only contains haemoglobin, earliest
timepoint used.

Coefficient of variation of 10 years cv_energylOy2a_aln  This only contains one energy measure

total energy intake earliest timepoint used.

Questionnaires

Age at menarche n/a age_at_menarche_mar12 This dataset only contains age at menarche,
used in validation set.

Derived from strength and 6 years 9m sdq81mns_kq All used, removed age and duplicates.

difficulties questionnaire

Girl/Boyv Toddler question-  lyear 6m kd_4b We used only the home score from this

naire
3 year FFQ Nutrient In- 3 yr 2

take, derived from food fre- mnths
quencies in My 3 Year old

Boy/Girl

My Young 4 Year Old 4y6m
Girl/Boy

My Daughter/Son at School 6y 9m
My Daughter/Sons Wellbe- 7y 7m
ing

Your Daughter/Son at 9 Oyr 7m
Schools — “The Developing 1lyr Im

Child”, “Questionnaire for
Class Teacher”, “Question-

naire for Head Teacher”

kgnut3yr_v3

kk_2c
kq-2c
kr_1b
ku_r2b

sefg_1b

dataset, in our validation set.
All variables included.

We used only the scores from this dataset,
and removed all duplicates of these.

We used only the scores from this dataset,
and removed all duplicates of these.

We used only the scores from this dataset,
and removed all duplicates of these.

We used only the scores from this dataset,
and removed all duplicates of these.

We used only the score variables.

Table B.2: ALSPAC data files used to create the outcome dataset and the rules used to determine
inclusion / exclusion of variables For further information of ALSPAC variables See [146, 147] and the
ALSPAC website: http://www.bristol.ac.uk/alspac/researchers/resources-available/.
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Abbreviated variable name Variable
Leptin, 9 leptin_9
CRP, 9 crp9

Age menarche AGE_MENARCHE_YE
HDL, 9 hdl_9

SBP, 7 f7sa021
IL6, 9 il6_9
Enjoyment of School Score, 4 kk489
Self Esteem: Scholastic Competence, 8 f8sel125
Apolipoprotein B, 9 apob_9
Triglycerides, 9 trig_9
VLDL age 9 vldl .9
Apolipoprotein al, 9 apoai_9
Insulin, 15 insulini_15
Attention/activity symptoms score, 11 se093b
SDQ emotional symptoms score, 6 kgpemotion
Hygiene Score, 4 kk310
Self Esteem: Global Self Worth Score, 8 f8sel126
FVC: LF, 8 f81f110
Burden of compulsions/obsessions score, 7  kr351a
Particular fears score, 7 kr236b

Glucose, 15

glucosem_15

Table B.5: List of the variables associated with the BMI allele score, with abbreviated
and full variable names. Abbreviations: BMI, body mass index; CI, confidence inter-
val; SD, standard deviation; IV, instrumental variable; CRP, c-reactive protein; LDL,
low density lipoprotein; 1L6, interleukin 6; SBP, systolic blood pressure; HDL, high
density lipoprotein; VLDL, very low density lipoprotein; SDQ, Strengths and Difficul-
ties Questionnaires; LF, lung function; FVC, forced vital capacity.
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Outcome variable

Data transformation

Leptin 9

CRP, 9

HDL, 9

IL6, 9

VLDL, 9

Triglycerides, 9

Insulin, 15

Enjoyment of School Score, 4

Self Esteem: Scholastic Competence, 8
Attention/activity symptoms score, 11
SDQ emotional symptoms score, 6

Self Esteem: Global Self Worth Score, 8
Burden of compulsions/obsessions score, 7
Particular fears score, 7

Logarithm
Logarithm
Logarithm
Logarithm
Logarithm
Logarithm
Logarithm
Binary <19, >19
Binary <18, >18
Binary 0, >0
Binary 0, >0
Binary <20, =20
Binary 0, >0
Binary <4, >4

Table B.6: Data transformations of outcome variables used in stage 2 analysis. Loga-

rithm tranformations use base 10.
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